首页 > 最新文献

Combustion and Flame最新文献

英文 中文
Thermodiffusively-unstable lean premixed hydrogen flames: Length scale effects and turbulent burning regimes 热扩散不稳定稀薄预混氢火焰:长度尺度效应和湍流燃烧制度
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-30 DOI: 10.1016/j.combustflame.2024.113855
E.F. Hunt, A.J. Aspden
<div><div>This paper presents direct numerical simulations (DNS) of thermodiffusively-unstable lean premixed hydrogen flames in the canonical turbulent flame-in-a-box configuration. A range of reactant (pressure, temperature, and equivalence ratio) and turbulent (Karlovitz and Damköhler number) conditions are used to explore the effects of the small and large turbulent scales on local and global flame response. Turbulence-flame interactions are confirmed to be independent from integral length scale (or equivalently, from Damköhler number) for a fixed Karlovitz number. Furthermore, a recent model that predicts mean local flame speed as a function of an instability parameter and Karlovitz number is also demonstrated to be independent from integral length scale. This model thereby reduces turbulent flame speed modelling for thermodiffusively-unstable cases to predicting surface area enhancement. Flame surface area wrinkling is found to have good agreement with Damköhler’s small-scale limit. There is some scatter in the data, although this is comparable with similar experimental data, and the freely-propagating flame properties have a greater impact on the turbulent flame speed than the flame surface area. It is demonstrated that domain size can have an effect on flame surface area even if the integral length scale remains unchanged; the larger volume into which flame surface area can develop results in a higher turbulent flame speed. This is not accounted for in conventional algebraic models for turbulent flame speed. To investigate the influence of the fuel Lewis number <span><math><msub><mrow><mi>Le</mi></mrow><mrow><mtext>f</mtext></mrow></msub></math></span>, an additional study is presented where <span><math><msub><mrow><mi>Le</mi></mrow><mrow><mtext>f</mtext></mrow></msub></math></span> (alone) is artificially modified to span a range from 0.35 to 2. The results demonstrate that more flame surface area is generated for smaller <span><math><msub><mrow><mi>Le</mi></mrow><mrow><mtext>f</mtext></mrow></msub></math></span>, but the difference for <span><math><msub><mrow><mi>Le</mi></mrow><mrow><mtext>f</mtext></mrow></msub></math></span> <!--> <span><math><mo>≲</mo></math></span> <!--> <!-->1 is much smaller than that observed for <span><math><msub><mrow><mi>Le</mi></mrow><mrow><mtext>f</mtext></mrow></msub></math></span> <!--> <span><math><mo>></mo></math></span> <!--> <!-->1. A volume-filling-surface concept is used to argue that there is a limit to how much flame surface can develop in a given volume, and so there is only so much more flame surface can be induced by the thermodiffusive response; whereas the thermodiffusive response at high <span><math><msub><mrow><mi>Le</mi></mrow><mrow><mtext>f</mtext></mrow></msub></math></span> is to reduce flame surface area. The agreement of the present data (and previous work) with Damköhler’s small-scale limit (even for low-to-moderate Karlovitz numbers) suggests that a distinction should be made betwe
本文对典型湍流箱内火焰结构下热扩散不稳定稀薄预混氢火焰进行了直接数值模拟。使用一系列反应物(压力、温度和等效比)和湍流(Karlovitz和Damköhler数)条件来探索小尺度和大尺度湍流对局部和全局火焰响应的影响。对于固定的Karlovitz数,证实湍流-火焰相互作用与积分长度尺度(或等价于Damköhler数)无关。此外,最近的模型预测平均局部火焰速度作为不稳定参数和Karlovitz数的函数,也证明了与积分长度尺度无关。因此,该模型减少了热扩散不稳定情况下的湍流火焰速度建模,以预测表面积增强。发现火焰表面起皱与Damköhler的小尺度极限符合得很好。虽然这与类似的实验数据相当,但数据中存在一定的分散,并且自由传播的火焰特性对湍流火焰速度的影响大于火焰表面积。结果表明,在整体长度尺度不变的情况下,区域尺寸对火焰表面积也有影响;火焰表面积发展的体积越大,湍流火焰速度越快。这在紊流火焰速度的传统代数模型中没有考虑到。为了研究燃料刘易斯数Lef的影响,提出了一项额外的研究,其中将Lef(单独)人为地修改为跨越0.35至2的范围。结果表明:较小的Lef产生的火焰表面积更大,但Lef > 1时的差异远小于Lef >时的差异;1. 用体积填充表面的概念来论证在给定体积内可以发展多少火焰表面是有限制的,因此热扩散响应所能引起的火焰表面只有这么多;而在高左侧的热扩散响应是减少火焰表面积。目前的数据(和以前的工作)与Damköhler的小尺度极限(即使是低到中等的Karlovitz数)的一致表明,应该区分小尺度极限和分布式燃烧状态。此外,有人认为,应根据Damköhler数字来区分大限额和小限额。因此,小火焰、稀薄反应和分布状态(如通常)应该用Karlovitz数来区分,但后两种状态都有单独的大型和小型状态。最后,讨论了紊流预混状态图的意义,并提出了一种修正的状态图。本文证实了湍流-火焰在火焰尺度上的相互作用与积分长度尺度(固定Karlovitz数)无关,热扩散不稳定火焰的局部火焰速度模型也是如此(Howarth et al., 2023);演示了湍流火焰模型中未考虑的潜在域尺寸效应;在低Damköhler数下,薄反应区热扩散不稳定火焰的火焰表面起皱符合Damköhler的小尺度极限;低燃料刘易斯数时火焰表面起皱略有增加,高燃料刘易斯数时火焰表面起皱明显减少。对紊流预混状态图有重要的影响:区分Damköhler的小尺度极限和分布燃烧状态;以Damköhler数量限制小、大规模分离;λ-火焰概念在薄反应区的应用并专门使用Karlovitz数和Damköhler数进行制度分类和图表轴。
{"title":"Thermodiffusively-unstable lean premixed hydrogen flames: Length scale effects and turbulent burning regimes","authors":"E.F. Hunt,&nbsp;A.J. Aspden","doi":"10.1016/j.combustflame.2024.113855","DOIUrl":"10.1016/j.combustflame.2024.113855","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper presents direct numerical simulations (DNS) of thermodiffusively-unstable lean premixed hydrogen flames in the canonical turbulent flame-in-a-box configuration. A range of reactant (pressure, temperature, and equivalence ratio) and turbulent (Karlovitz and Damköhler number) conditions are used to explore the effects of the small and large turbulent scales on local and global flame response. Turbulence-flame interactions are confirmed to be independent from integral length scale (or equivalently, from Damköhler number) for a fixed Karlovitz number. Furthermore, a recent model that predicts mean local flame speed as a function of an instability parameter and Karlovitz number is also demonstrated to be independent from integral length scale. This model thereby reduces turbulent flame speed modelling for thermodiffusively-unstable cases to predicting surface area enhancement. Flame surface area wrinkling is found to have good agreement with Damköhler’s small-scale limit. There is some scatter in the data, although this is comparable with similar experimental data, and the freely-propagating flame properties have a greater impact on the turbulent flame speed than the flame surface area. It is demonstrated that domain size can have an effect on flame surface area even if the integral length scale remains unchanged; the larger volume into which flame surface area can develop results in a higher turbulent flame speed. This is not accounted for in conventional algebraic models for turbulent flame speed. To investigate the influence of the fuel Lewis number &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Le&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;f&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, an additional study is presented where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Le&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;f&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; (alone) is artificially modified to span a range from 0.35 to 2. The results demonstrate that more flame surface area is generated for smaller &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Le&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;f&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, but the difference for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Le&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;f&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; &lt;!--&gt; &lt;span&gt;&lt;math&gt;&lt;mo&gt;≲&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; &lt;!--&gt; &lt;!--&gt;1 is much smaller than that observed for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Le&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;f&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; &lt;!--&gt; &lt;span&gt;&lt;math&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; &lt;!--&gt; &lt;!--&gt;1. A volume-filling-surface concept is used to argue that there is a limit to how much flame surface can develop in a given volume, and so there is only so much more flame surface can be induced by the thermodiffusive response; whereas the thermodiffusive response at high &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Le&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;f&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is to reduce flame surface area. The agreement of the present data (and previous work) with Damköhler’s small-scale limit (even for low-to-moderate Karlovitz numbers) suggests that a distinction should be made betwe","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113855"},"PeriodicalIF":5.8,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the burning behavior of Ultra porous polyurethane-based aerogel: Impact of material properties on burning behavior 超多孔聚氨酯气凝胶燃烧性能的表征:材料性能对燃烧性能的影响
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-29 DOI: 10.1016/j.combustflame.2024.113859
Yan Ding , Xinyang Wang , Grayson Bellamy , Mark McKinnon , Yu Wang
This work details a hierarchical methodology to develop a pyrolysis model for ultra porous energy-efficient polyurethane-based aerogel (PU-aerogel). This methodology relied on simultaneous measurements of sample mass, back surface temperature (Tback), as well as sample shape profiles collected from controlled atmosphere pyrolysis apparatus (CAPA II) experiments. Based on the measured radiation-optical properties and the developed reaction mechanism, the thermal transport properties were determined based on the inverse modeling of these measurements. The resulting pyrolysis model was able to reproduce the sample shape profiles and Tback with an average accuracy of 10.5 % and 6.2 %, respectively. The model also predicted the burning rates of PU-aerogel at both radiative heat fluxes. An additional sensitivity analysis was conducted to systematically investigate the impact of input parameters on the burning behavior of PU-aerogel. The average MLR (avgMLR) and time to Tback = 533K (t533K) of the CAPA II experiment under 60 kW m−2 were defined as the model outputs. The density of the virgin material showed the most significant impact on changing avgMLR (-27.4 %) and t533K (108.7 %), followed by the density and thermal conductivity of intermediate components. The variations in material properties yielded a negligible effect on the time to peak MLR because the peak MLR of this specific material occurred very rapidly upon exposure. The findings of this work enabled the prediction of burning behavior of PU-aerogel and the design of a more flame-resistant PU-aerogel.
这项工作详细介绍了一种分层方法来开发超多孔节能聚氨酯气凝胶(pu -气凝胶)的热解模型。该方法依赖于同时测量样品质量、后表面温度(Tback)以及从可控气氛热解装置(CAPA II)实验中收集的样品形状曲线。根据所测得的辐射光学性质和所建立的反应机理,通过对这些测量结果的逆建模,确定了热输运性质。所建立的热解模型能够再现样品的形状曲线和Tback,平均精度分别为10.5%和6.2%。该模型还预测了pu气凝胶在两种辐射热流下的燃烧速率。另外进行了灵敏度分析,系统地研究了输入参数对pu气凝胶燃烧行为的影响。将CAPA II实验在60 kW m−2条件下的平均MLR (avgMLR)和转回时间= 533K (t533K)定义为模型输出。原始材料的密度对avgMLR(- 27.4%)和t533K(108.7%)的影响最为显著,其次是中间组分的密度和导热系数。材料特性的变化对MLR峰值时间的影响可以忽略不计,因为这种特定材料的MLR峰值在暴露后非常迅速地出现。这项工作的发现使得预测pu气凝胶的燃烧行为和设计更阻燃的pu气凝胶成为可能。
{"title":"Characterization of the burning behavior of Ultra porous polyurethane-based aerogel: Impact of material properties on burning behavior","authors":"Yan Ding ,&nbsp;Xinyang Wang ,&nbsp;Grayson Bellamy ,&nbsp;Mark McKinnon ,&nbsp;Yu Wang","doi":"10.1016/j.combustflame.2024.113859","DOIUrl":"10.1016/j.combustflame.2024.113859","url":null,"abstract":"<div><div>This work details a hierarchical methodology to develop a pyrolysis model for ultra porous energy-efficient polyurethane-based aerogel (PU-aerogel). This methodology relied on simultaneous measurements of sample mass, back surface temperature (<em>T<sub>back</sub></em>), as well as sample shape profiles collected from controlled atmosphere pyrolysis apparatus (CAPA II) experiments. Based on the measured radiation-optical properties and the developed reaction mechanism, the thermal transport properties were determined based on the inverse modeling of these measurements. The resulting pyrolysis model was able to reproduce the sample shape profiles and <em>T<sub>back</sub></em> with an average accuracy of 10.5 % and 6.2 %, respectively. The model also predicted the burning rates of PU-aerogel at both radiative heat fluxes. An additional sensitivity analysis was conducted to systematically investigate the impact of input parameters on the burning behavior of PU-aerogel. The average MLR (<em>avgMLR</em>) and time to <em>T<sub>back</sub> = 533K</em> (<span><math><msub><mi>t</mi><mrow><mn>533</mn><mi>K</mi></mrow></msub></math></span>) of the CAPA II experiment under 60 kW m<sup>−2</sup> were defined as the model outputs. The density of the virgin material showed the most significant impact on changing <em>avgMLR</em> (-27.4 %) and <span><math><msub><mi>t</mi><mrow><mn>533</mn><mi>K</mi></mrow></msub></math></span> (108.7 %)<em>,</em> followed by the density and thermal conductivity of intermediate components. The variations in material properties yielded a negligible effect on the time to peak MLR because the peak MLR of this specific material occurred very rapidly upon exposure. The findings of this work enabled the prediction of burning behavior of PU-aerogel and the design of a more flame-resistant PU-aerogel.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113859"},"PeriodicalIF":5.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A detailed analysis of the key steps of the cyclopentene autoignition mechanism from calculated RRKM rate constants associated with ignition delay time simulations 通过计算的RRKM速率常数与点火延迟时间的模拟,详细分析了环戊烯自燃机理的关键步骤
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-29 DOI: 10.1016/j.combustflame.2024.113862
João G.S. Monteiro , Arthur C.P.G. Ventura , Eric B. Lindgren , Felipe P. Fleming , Anderson R. dos Santos , André G.H. Barbosa
Cyclopentene, a prototype for studying the combustion chemistry of cyclic olefins, appears in the oxidation of cyclic hydrocarbons and can provide key information in the understanding of the formation of polycyclic aromatic hydrocarbons. The
addition to the double-bond is one of the main steps in low-temperature oxidation mechanisms of unsaturated organic compounds. In the case of cyclopentene, addition of
yields a hydroxycyclopentyl radical, that can further react with O2. In this work, we studied the potential energy surface and reaction rates for the subsequent reactions of O2 with the hydroxycyclopentyl radical. The temperature and pressure dependence of the rate constants were determined using master equation simulations, with microcanonical rate coefficients calculated by RRKM theory. The potential energy surface was extracted from high-level electronic structure theory, based on geometries and frequencies obtained using density functional theory. Our results indicate that a Waddington-type mechanism, which produces glutaraldehyde and regenerates
, is the dominant reaction pathway. However, at low-temperatures, a secondary pathway leading to the formation of epoxycyclopentanol and
becomes equally significant. The thermochemistry of all
radicals involved were also evaluated. The kinetic and thermodynamic data were incorporated into a comprehensive mechanism of cyclopentene autoignition, in order to simulate the associated ignition delays. The updated reaction mechanism resulted in shorter ignition delays compared to the non-updated mechanism. Sensitivity analysis was performed to identify the primary contributors.
Novelty and Significance Statement
Cyclopentene is an important intermediate in the oxidation of cyclic olefins and serves as a precursor in the formation of polycyclic aromatic hydrocarbons. Kinetic modeling studies require detailed information on elementary reactions, much of which is typically unavailable from experiments. The novelty and significance of this study lie in the theoretical calculations of rate constants for key reactions in the oxidation of cyclopentene and their evaluation within the comprehensive mechanism proposed by Lokachari et al. The results demonstrate that the studied reactions significantly influence the ignition delays of cyclopentene at low temperatures. Furthermore, the data presented here can be applied in future studies focusing on the oxidation of cyclic olefins.
环戊烯是研究环烯烃燃烧化学的原型,它出现在环烃的氧化过程中,可以为了解多环芳烃的形成提供关键信息。双键加成是不饱和有机化合物低温氧化机理的主要步骤之一。在环戊烯的情况下,加成得到羟基环戊基自由基,它可以进一步与O2反应。在这项工作中,我们研究了O2与羟基环戊基自由基后续反应的势能、表面和反应速率。利用主方程模拟确定了速率常数对温度和压力的依赖关系,并利用RRKM理论计算了微规范速率系数。基于密度泛函理论得到的几何形状和频率,从高级电子结构理论中提取势能面。我们的结果表明,Waddington-type机制是主要的反应途径,即产生戊二醛并进行再生。然而,在低温下,导致环氧环戊醇和形成的次级途径变得同样重要。并对所有自由基的热化学性质进行了评价。将动力学和热力学数据整合到环戊烯自燃的综合机理中,以模拟相关的点火延迟。与未更新的机制相比,更新的反应机制导致了更短的点火延迟。进行敏感性分析以确定主要致病因素。新颖性和意义声明环戊烯是环烯烃氧化的重要中间体,是形成多环芳烃的前体。动力学模型研究需要基本反应的详细信息,而这些信息通常无法从实验中获得。本研究的新颖性和意义在于对环戊烯氧化过程中关键反应的速率常数进行了理论计算,并在Lokachari等人提出的综合机理中进行了评价。结果表明,所研究的反应对环戊烯在低温下的点火延迟有显著影响。此外,本文的数据可以应用于未来的研究重点是环烯烃的氧化。
{"title":"A detailed analysis of the key steps of the cyclopentene autoignition mechanism from calculated RRKM rate constants associated with ignition delay time simulations","authors":"João G.S. Monteiro ,&nbsp;Arthur C.P.G. Ventura ,&nbsp;Eric B. Lindgren ,&nbsp;Felipe P. Fleming ,&nbsp;Anderson R. dos Santos ,&nbsp;André G.H. Barbosa","doi":"10.1016/j.combustflame.2024.113862","DOIUrl":"10.1016/j.combustflame.2024.113862","url":null,"abstract":"<div><div>Cyclopentene, a prototype for studying the combustion chemistry of cyclic olefins, appears in the oxidation of cyclic hydrocarbons and can provide key information in the understanding of the formation of polycyclic aromatic hydrocarbons. The <figure><img></figure> addition to the double-bond is one of the main steps in low-temperature oxidation mechanisms of unsaturated organic compounds. In the case of cyclopentene, addition of <figure><img></figure> yields a hydroxycyclopentyl radical, that can further react with O<sub>2</sub>. In this work, we studied the potential energy surface and reaction rates for the subsequent reactions of O<sub>2</sub> with the hydroxycyclopentyl radical. The temperature and pressure dependence of the rate constants were determined using master equation simulations, with microcanonical rate coefficients calculated by RRKM theory. The potential energy surface was extracted from high-level electronic structure theory, based on geometries and frequencies obtained using density functional theory. Our results indicate that a Waddington-type mechanism, which produces glutaraldehyde and regenerates <figure><img></figure> , is the dominant reaction pathway. However, at low-temperatures, a secondary pathway leading to the formation of epoxycyclopentanol and <figure><img></figure> becomes equally significant. The thermochemistry of all <figure><img></figure> radicals involved were also evaluated. The kinetic and thermodynamic data were incorporated into a comprehensive mechanism of cyclopentene autoignition, in order to simulate the associated ignition delays. The updated reaction mechanism resulted in shorter ignition delays compared to the non-updated mechanism. Sensitivity analysis was performed to identify the primary contributors.</div><div><strong>Novelty and Significance Statement</strong></div><div>Cyclopentene is an important intermediate in the oxidation of cyclic olefins and serves as a precursor in the formation of polycyclic aromatic hydrocarbons. Kinetic modeling studies require detailed information on elementary reactions, much of which is typically unavailable from experiments. The novelty and significance of this study lie in the theoretical calculations of rate constants for key reactions in the oxidation of cyclopentene and their evaluation within the comprehensive mechanism proposed by Lokachari et al. The results demonstrate that the studied reactions significantly influence the ignition delays of cyclopentene at low temperatures. Furthermore, the data presented here can be applied in future studies focusing on the oxidation of cyclic olefins.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113862"},"PeriodicalIF":5.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A detailed kinetic submechanism for OH* chemiluminescence in hydrocarbon combustion 碳氢化合物燃烧中OH*化学发光的详细动力学亚机理
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-29 DOI: 10.1016/j.combustflame.2024.113865
Boris I. Loukhovitski, Alexander S. Sharipov
<div><div>Here, we propose a new physically consistent modeling scheme, <span><math><mrow><msub><mrow><mtext>JIHT-OHex(C</mtext></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mi>y</mi></mrow></msub><mtext>)</mtext></mrow></math></span>, that accurately predicts the formation and consumption of electronically excited chemiluminescent OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> molecules in hydrocarbon flames over a wide range of temperatures, pressures, and mixture compositions. It incorporates (unchanged) our recent well-founded <span><math><mrow><msub><mrow><mtext>JIHT-OHex(H</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>)</mtext></mrow></math></span> reaction submodel (Sharipov et al., 2024, <em>Combust. Flame</em>, <strong>263</strong>, 113417), aimed at describing the OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> evolution in hydrogen oxidation, and contains a necessary set of elementary processes involving OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> and carbon-containing species with the rate constants that are based either on a critical review of known, sometimes conflicting literature data on the elementary reaction kinetics of OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> or, where necessary and appropriate, on semiempirical estimates. To improve the <span><math><mrow><msub><mrow><mtext>JIHT-OHex(C</mtext></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mi>y</mi></mrow></msub><mtext>)</mtext></mrow></math></span> performance against a representative data set for the observed OH(<span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Π</mi></mrow></math></span>) chemiluminescent emission (near 309 nm) accompanying high-temperature oxidation of various (from C<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> to C<sub>10</sub>) hydrocarbon-based mixtures that we aggregated at the preparatory stage of the work, the rate coefficients of reaction and quenching processes that the overall OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> kinetics is most sensitive to (or for which there is a particular scatter in the available kinetic data, if any) were jointly optimized within their theoretical expectations and experimental uncertainties. It is shown that our universal detailed OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> submechanism, which includes a much larger pool of elementary processes (32 reactions and 36 quenching partners) than previous essentially global models (consisting of only a few processes and tailored to specific mixtures and combustion conditions), clearly outperforms the competitors in terms of
在这里,我们提出了一种新的物理一致的建模方案,JIHT-OHex(CxHy),它准确地预测了在广泛的温度、压力和混合物组成范围内碳氢化合物火焰中电子激发化学发光OH *分子的形成和消耗。它结合了我们最近建立良好的JIHT-OHex(H2)反应子模型(Sharipov et al., 2024, combustion)。火焰,263,113417),旨在描述氢氧化中的OH *演化,并包含一套必要的涉及OH *和含碳物质的基本过程,其速率常数要么基于对已知的,有时相互矛盾的OH *基本反应动力学文献数据的批判性审查,要么在必要和适当的情况下,基于半经验估计。为了提高JIHT-OHex(CxHy)对具有代表性的数据集的性能,这些数据集用于观察OH(A2Σ+→X2Π)化学发光发射(接近309 nm)伴随各种(从C1到C10)烃基混合物的高温氧化,我们在工作的准备阶段聚集了反应速率系数和淬火过程,总的OH *动力学对其最敏感(或在可用的动力学数据中有一个特定的分散)。(如果有的话)在他们的理论期望和实验不确定性范围内共同优化。结果表明,我们的通用详细OH *子机制,包括更大的基本过程池(32个反应和36个猝灭伙伴),而不是以前的基本全局模型(仅由少数过程组成,并针对特定混合物和燃烧条件量身定制),在积分精度方面明显优于竞争对手(当针对收集的大量OH *排放测量进行测试时)。因此,我们有理由相信,如层流预混甲烷-空气火焰条件的例子,我们详细的OH *子模型具有物理上真实的(尽可能的)速率常数,将在更广泛的燃烧条件和流动参数范围内表现良好,而不是验证和调整的条件。虽然人们普遍认为紫外化学发光OH(A2Σ+−X2Π)发射作为整个燃烧过程的光学特征和潜在的化学反应提供了独特的诊断能力,但近年来,对于在各种燃烧环境中对OH *化学发光测量进行定量解释的详细反应机制的发展肯定不够重视。对于碳氢化合物的氧化尤其如此。事实上,迄今已知的有关OH *模型基本上是全局的,这意味着它们都包含令人惊讶的少量过程(在大多数情况下,在淬火过程中只涉及一对OH *形成反应),并且它们的速率常数根据特定的烃基混合物和燃烧条件进行调整。因此,迫切需要修订目前对碳氢化合物存在时OH *动力学的理解;因此,我们详细的基于物理的反应机制,包括几十种可行的OH *形成和消耗途径,具有现实的速率系数,因此能够比以前的模型更准确地模拟碳氢化合物火焰中的OH *发射,这本身就是对化学发光建模实践的重要和新颖的贡献。同样重要的是,这里推荐的速率常数拟合,在激发态化学的背景下也具有独立的意义。
{"title":"A detailed kinetic submechanism for OH* chemiluminescence in hydrocarbon combustion","authors":"Boris I. Loukhovitski,&nbsp;Alexander S. Sharipov","doi":"10.1016/j.combustflame.2024.113865","DOIUrl":"10.1016/j.combustflame.2024.113865","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Here, we propose a new physically consistent modeling scheme, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;JIHT-OHex(C&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;H&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mtext&gt;)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, that accurately predicts the formation and consumption of electronically excited chemiluminescent OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; molecules in hydrocarbon flames over a wide range of temperatures, pressures, and mixture compositions. It incorporates (unchanged) our recent well-founded &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;JIHT-OHex(H&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mtext&gt;)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; reaction submodel (Sharipov et al., 2024, &lt;em&gt;Combust. Flame&lt;/em&gt;, &lt;strong&gt;263&lt;/strong&gt;, 113417), aimed at describing the OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; evolution in hydrogen oxidation, and contains a necessary set of elementary processes involving OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and carbon-containing species with the rate constants that are based either on a critical review of known, sometimes conflicting literature data on the elementary reaction kinetics of OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; or, where necessary and appropriate, on semiempirical estimates. To improve the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;JIHT-OHex(C&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;H&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mtext&gt;)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; performance against a representative data set for the observed OH(&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;Π&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) chemiluminescent emission (near 309 nm) accompanying high-temperature oxidation of various (from C&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; to C&lt;sub&gt;10&lt;/sub&gt;) hydrocarbon-based mixtures that we aggregated at the preparatory stage of the work, the rate coefficients of reaction and quenching processes that the overall OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; kinetics is most sensitive to (or for which there is a particular scatter in the available kinetic data, if any) were jointly optimized within their theoretical expectations and experimental uncertainties. It is shown that our universal detailed OH&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; submechanism, which includes a much larger pool of elementary processes (32 reactions and 36 quenching partners) than previous essentially global models (consisting of only a few processes and tailored to specific mixtures and combustion conditions), clearly outperforms the competitors in terms of","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113865"},"PeriodicalIF":5.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flamelet-based Eulerian transported PDF method for the modeling and simulation of supersonic combustion 一种基于小火焰的欧拉传输PDF方法用于超声速燃烧的建模与仿真
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-28 DOI: 10.1016/j.combustflame.2024.113864
Shenghui Zhong , Shijie Xu , Wubin Weng , Weiwei Cai , Longfei Chen
<div><div>This paper presents a high-efficiency and high-fidelity approach to model supersonic combustion using the extended flamelet-generated manifold (FGM) and the Eulerian transported probability density function (PDF), also known as the Eulerian stochastic fields (ESF) method. The efficiency benefits from the FGM, where the compressibility effects induced by shock waves are considered using two extra control variables, i.e., the pressure (<span><math><mi>p</mi></math></span>) and the absolute internal energy of the oxidizer (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>), in addition to the mixture fraction (<span><math><mi>Z</mi></math></span>) and progress variable (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) in traditional flamelet tables. The joint PDF for these control variables is modeled using transported PDF based on the ESF method. The ESF method enhances accuracy in the prediction of turbulence-chemistry interactions, avoiding complexity induced by the presumed PDF in the flamelet table and ad-hoc presumed and independent joint PDF assumptions, e.g., the typical presumed <span><math><mi>β</mi></math></span>-PDF for <span><math><mi>Z</mi></math></span> and <span><math><mi>δ</mi></math></span>-PDF for <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. This FGM-ESF method is tested in large eddy simulations of two canonical hydrogen supersonic flames: a strut-stabilized hydrogen supersonic flame (DLR case) and a transverse hydrogen jet flame in a high-enthalpy incoming flow (Stanford case). For both cases, results show that including the compressibility effects in the FGM table is essential for properly describing the flame behaviors near shock waves. The sub-grid PDF of control variables significantly influences near-wall and shear-layer combustion, and the ESF method demonstrates superior performance in predicting the near-wall reaction zone and the shear-layer reaction zone compared to the perfectly micro-mixed sub-grid model (<span><math><mi>δ</mi></math></span>-PDF) for the Stanford case. This study marks the first application of the FGM-ESF approach with a <span><math><mi>Z</mi></math></span>-<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>o</mi><mi>x</mi></mrow></msub></math></span>-<span><math><mi>p</mi></math></span> FGM table to simulate supersonic flames, offering a novel perspective for future modeling efforts in this domain.</div><div><strong>Novelty and Significance Statement</strong></div><div>The novelty of this research lies in the development and application of an efficient computational approach that for the first time couples the extended flamelet-generated manifold (FGM) method with the Eulerian stochastic fields (ESF) to simulate supersonic flames. This combined FGM-ESF method incorporates pressure
本文提出了一种利用扩展火焰生成流形(FGM)和欧拉传递概率密度函数(PDF)(也称为欧拉随机场(ESF)方法)高效高保真地模拟超声速燃烧的方法。除了传统火焰表中的混合分数(Z)和进度变量(Yc)外,FGM还使用两个额外的控制变量,即压力(p)和氧化剂的绝对内能(Eox)来考虑激波引起的可压缩性效应,从而提高了效率。使用基于ESF方法的传输PDF对这些控制变量的联合PDF进行建模。ESF方法提高了湍流-化学相互作用预测的准确性,避免了火焰表中假设的PDF和特别的假设和独立的联合PDF假设所带来的复杂性,例如Z的典型假设β-PDF和Yc的δ-PDF。FGM-ESF方法在两种典型氢超声速火焰的大涡模拟中进行了测试:支柱稳定氢超声速火焰(DLR案例)和高焓来流中的横向氢喷射火焰(Stanford案例)。对于这两种情况,结果表明,在FGM表中包括可压缩性效应对于正确描述激波附近的火焰行为是必不可少的。控制变量的子网格PDF对近壁和剪切层燃烧有显著影响,ESF方法在预测近壁反应区和剪切层反应区方面优于斯坦福案例的完全微混合子网格模型(δ-PDF)。这项研究标志着FGM- esf方法与Z-Yc-Eox-p FGM表首次应用于模拟超音速火焰,为该领域未来的建模工作提供了新的视角。新颖性和意义声明本研究的新颖性在于开发并应用了一种高效的计算方法,首次将扩展火焰生成流形(FGM)方法与欧拉随机场(ESF)相结合来模拟超音速火焰。这种组合式FGM- esf方法将压力和氧化剂能量作为FGM表中的附加控制变量,以解释可压缩性影响。ESF用于描述子网格尺度的联合概率密度函数,而不依赖于复杂的假设函数。应用于典型支柱稳定氢超音速火焰和高焓来流中的横向氢射流火焰,证明了FGM-ESF方法在捕获火焰动力学方面的优越预测能力。四维和二维FGM表之间的比较为这些结构的压缩效应的重要性提供了新的见解。
{"title":"A flamelet-based Eulerian transported PDF method for the modeling and simulation of supersonic combustion","authors":"Shenghui Zhong ,&nbsp;Shijie Xu ,&nbsp;Wubin Weng ,&nbsp;Weiwei Cai ,&nbsp;Longfei Chen","doi":"10.1016/j.combustflame.2024.113864","DOIUrl":"10.1016/j.combustflame.2024.113864","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper presents a high-efficiency and high-fidelity approach to model supersonic combustion using the extended flamelet-generated manifold (FGM) and the Eulerian transported probability density function (PDF), also known as the Eulerian stochastic fields (ESF) method. The efficiency benefits from the FGM, where the compressibility effects induced by shock waves are considered using two extra control variables, i.e., the pressure (&lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;) and the absolute internal energy of the oxidizer (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;), in addition to the mixture fraction (&lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;) and progress variable (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) in traditional flamelet tables. The joint PDF for these control variables is modeled using transported PDF based on the ESF method. The ESF method enhances accuracy in the prediction of turbulence-chemistry interactions, avoiding complexity induced by the presumed PDF in the flamelet table and ad-hoc presumed and independent joint PDF assumptions, e.g., the typical presumed &lt;span&gt;&lt;math&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-PDF for &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-PDF for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. This FGM-ESF method is tested in large eddy simulations of two canonical hydrogen supersonic flames: a strut-stabilized hydrogen supersonic flame (DLR case) and a transverse hydrogen jet flame in a high-enthalpy incoming flow (Stanford case). For both cases, results show that including the compressibility effects in the FGM table is essential for properly describing the flame behaviors near shock waves. The sub-grid PDF of control variables significantly influences near-wall and shear-layer combustion, and the ESF method demonstrates superior performance in predicting the near-wall reaction zone and the shear-layer reaction zone compared to the perfectly micro-mixed sub-grid model (&lt;span&gt;&lt;math&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-PDF) for the Stanford case. This study marks the first application of the FGM-ESF approach with a &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-&lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; FGM table to simulate supersonic flames, offering a novel perspective for future modeling efforts in this domain.&lt;/div&gt;&lt;div&gt;&lt;strong&gt;Novelty and Significance Statement&lt;/strong&gt;&lt;/div&gt;&lt;div&gt;The novelty of this research lies in the development and application of an efficient computational approach that for the first time couples the extended flamelet-generated manifold (FGM) method with the Eulerian stochastic fields (ESF) to simulate supersonic flames. This combined FGM-ESF method incorporates pressure ","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113864"},"PeriodicalIF":5.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic study of the growth of PAHs from biphenyl with the assistance of phenylacetylene 联苯在苯乙炔催化下生长多环芳烃的动力学研究
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-28 DOI: 10.1016/j.combustflame.2024.113881
Zhiyao Zhang , Lili Ye , Hanfeng Jin , Mengmeng Li , Yubo Bi
Biphenyl is a crucial precursor to polycyclic aromatic hydrocarbons (PAHs), and phenylacetylene is an abundant product in aromatic hydrocarbons combustion. By exploring the reaction kinetics of phenylacetylene with biphenyl radicals, we further explore the novel hydrogen-abstraction phenylacetylene-addition (HAPaA) mechanism which is recently proposed to account for alternative mass growth pathways of PAHs. A combination of M06–2X/6–311+G(d,p) and PWPB95-D3/def2-QZVPP calculations were performed to construct the potential energy surfaces, and the rate coefficients were determined via solution of transition state theory based master equations. We demonstrate the capability of biphenyl species to grow with the assistance of phenylacetylene by unraveling the ring growth process of biphenyl radicals, establishing the main evolution routes of key intermediates, and quantifying the competition relationship between various channels. Energetic analysis and kinetic calculations demonstrate that the initial orientations of the reacting moieties do have a remarkable impact on the detailed kinetics of the entrance channels. However, the two adducts formed from initial additions achieve a rapid equilibrium because of the largest rate constants of the interconversion reactions between them, which counteracts the orientation effect on the overall kinetics. Further reaction pathways and corresponding products are related to the aryl radical position. Specifically, the aromatics of 4-phenylphenanthrene or phenanthrene, formed through cyclization reactions followed by hydrogen or phenyl eliminations, are preferred for the “armchair” type 2-biphenyl radical. In contrast, products featuring a triple bond generated through CH β-scission reactions are favored for the “free” type 3-biphenyl and 4-biphenyl radicals. The present research can serve as a good basis for further experimental and modeling studies of PAHs and soot formation.
联苯是多环芳烃(PAHs)的重要前体,而苯乙炔是芳烃燃烧过程中大量产生的产物。通过探索苯乙炔与联苯自由基的反应动力学,我们进一步探索了最近提出的新型吸氢苯乙炔加成(HAPaA)机制,该机制可以解释多环芳烃的其他质量增长途径。结合M06-2X / 6-311 +G(d,p)和PWPB95-D3/def2-QZVPP计算构建势能面,通过求解基于过渡态理论的主方程确定速率系数。我们通过揭示联苯自由基的环状生长过程,建立关键中间体的主要进化路线,并量化各通道之间的竞争关系,证明了联苯物种在苯乙炔的帮助下生长的能力。能量分析和动力学计算表明,反应组分的初始取向对入口通道的详细动力学有显著影响。然而,由于初始加成形成的两种加合物之间的相互转化反应速率常数最大,从而抵消了取向对整体动力学的影响,从而实现了快速平衡。进一步的反应途径和相应的产物与芳基的位置有关。具体来说,4-苯基菲或菲的芳烃是通过环化反应形成的,然后是氢或苯基消除,对于“扶手椅”型2-联苯自由基是首选的。相反,通过CH β-裂解反应生成的具有三键的产物有利于“自由”型3-联苯和4-联苯自由基。本研究为进一步开展多环芳烃与烟尘形成的实验和模拟研究奠定了良好的基础。
{"title":"Kinetic study of the growth of PAHs from biphenyl with the assistance of phenylacetylene","authors":"Zhiyao Zhang ,&nbsp;Lili Ye ,&nbsp;Hanfeng Jin ,&nbsp;Mengmeng Li ,&nbsp;Yubo Bi","doi":"10.1016/j.combustflame.2024.113881","DOIUrl":"10.1016/j.combustflame.2024.113881","url":null,"abstract":"<div><div>Biphenyl is a crucial precursor to polycyclic aromatic hydrocarbons (PAHs), and phenylacetylene is an abundant product in aromatic hydrocarbons combustion. By exploring the reaction kinetics of phenylacetylene with biphenyl radicals, we further explore the novel hydrogen-abstraction phenylacetylene-addition (HAPaA) mechanism which is recently proposed to account for alternative mass growth pathways of PAHs. A combination of M06–2X/6–311+<em>G</em>(d,p) and PWPB95-D3/def2-QZVPP calculations were performed to construct the potential energy surfaces, and the rate coefficients were determined via solution of transition state theory based master equations. We demonstrate the capability of biphenyl species to grow with the assistance of phenylacetylene by unraveling the ring growth process of biphenyl radicals, establishing the main evolution routes of key intermediates, and quantifying the competition relationship between various channels. Energetic analysis and kinetic calculations demonstrate that the initial orientations of the reacting moieties do have a remarkable impact on the detailed kinetics of the entrance channels. However, the two adducts formed from initial additions achieve a rapid equilibrium because of the largest rate constants of the interconversion reactions between them, which counteracts the orientation effect on the overall kinetics. Further reaction pathways and corresponding products are related to the aryl radical position. Specifically, the aromatics of 4-phenylphenanthrene or phenanthrene, formed through cyclization reactions followed by hydrogen or phenyl eliminations, are preferred for the “armchair” type 2-biphenyl radical. In contrast, products featuring a triple bond generated through C<img>H β-scission reactions are favored for the “free” type 3-biphenyl and 4-biphenyl radicals. The present research can serve as a good basis for further experimental and modeling studies of PAHs and soot formation.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113881"},"PeriodicalIF":5.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of radiative heat transfer on flame propagation in dense iron-air aerosols 辐射传热对稠密铁-空气气溶胶中火焰传播的影响
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-26 DOI: 10.1016/j.combustflame.2024.113848
W.J. S. Ramaekers , T. Hazenberg , L.C. Thijs , D.J.E.M. Roekaerts , J.A. van Oijen , L.P.H. de Goey
It is demonstrated that in the (near) zero-gravity experiments conducted by Tang et al. (Combust. Flame; 2009, 2011) iron powder aerosols created using the finest powders are optically thick, implying that radiative heat transfer between particles should not be neglected. To test this concept, an iron particle oxidation model has been implemented in OpenFOAM, including a coupling with the P1-model for radiative heat transfer.
For flame simulations in which radiation is not included, obtained flame propagation velocities deviate less than 8% with results obtained using Chem1D-Fe and also show a good correspondance with algebraic models for optically thin aerosols. No significant difference in predicted flame propagation velocity is observed between 1D and 3D simulations: contrary to what is seen in gaseous flames, including the curvature of the flame does not increase predicted flame speeds substantially. However, measured flame propagation velocity values exceed numerically obtained predictions excluding thermal radiation by a factor of three to four. To the authors’ knowledge, this discrepancy is exemplary for the difference between experimentally obtained values for flame propagation velocities, and predictions made using numerical simulation tools neglecting radiative heat transfer.
Accounting for radiation increases predicted flame propagation velocities, in the absence of confining boundaries, by approximately a factor of 10 which is in line with algebraic models for optically thick aerosols. In 3D simulations for the two finest iron powders in the experiments, including radiation and accounting for the presence of the confining tube wall results in an error of 11% and 35% with respect to measured flame propagation velocities, significantly smaller than predictions obtained excluding thermal radiation. Although these flames are not purely radiation-driven, inclusion of particle-to-particle radiative heat transfer enhances flame propagation velocities in simulations to values that correspond much better with experimental values than if radiation would not be taken into account.
唐等人(Combust. Flame; 2009, 2011)进行的(近)零重力实验表明,使用最细粉末生成的铁粉气溶胶具有光学厚度,这意味着不应忽略颗粒之间的辐射传热。对于不包括辐射的火焰模拟,所获得的火焰传播速度与使用 Chem1D-Fe 所获得的结果偏差小于 8%,并且与光学稀薄气溶胶的代数模型有很好的对应性。一维和三维模拟的火焰传播速度预测值没有明显差异:与气态火焰的情况相反,加入火焰曲率并不会大幅提高火焰的预测速度。然而,测量到的火焰传播速度值却比排除热辐射后的数值预测值高出三到四倍。据作者所知,这种差异是火焰传播速度实验值与忽略辐射传热的数值模拟工具预测值之间差异的典范。在没有约束边界的情况下,考虑辐射会使预测的火焰传播速度增加约 10 倍,这与光学厚气溶胶的代数模型一致。在对实验中两种最细铁粉的三维模拟中,考虑到辐射和约束管壁的存在,与测量的火焰传播速度相比,误差分别为 11% 和 35%,明显小于不考虑热辐射的预测值。虽然这些火焰并非纯粹由辐射驱动,但加入粒子间辐射传热后,模拟的火焰传播速度比不考虑辐射的情况下更接近实验值。
{"title":"The influence of radiative heat transfer on flame propagation in dense iron-air aerosols","authors":"W.J. S. Ramaekers ,&nbsp;T. Hazenberg ,&nbsp;L.C. Thijs ,&nbsp;D.J.E.M. Roekaerts ,&nbsp;J.A. van Oijen ,&nbsp;L.P.H. de Goey","doi":"10.1016/j.combustflame.2024.113848","DOIUrl":"10.1016/j.combustflame.2024.113848","url":null,"abstract":"<div><div>It is demonstrated that in the (near) zero-gravity experiments conducted by Tang et al. (Combust. Flame; 2009, 2011) iron powder aerosols created using the finest powders are optically thick, implying that radiative heat transfer between particles should not be neglected. To test this concept, an iron particle oxidation model has been implemented in OpenFOAM, including a coupling with the P1-model for radiative heat transfer.</div><div>For flame simulations in which radiation is not included, obtained flame propagation velocities deviate less than 8% with results obtained using Chem1D-Fe and also show a good correspondance with algebraic models for optically thin aerosols. No significant difference in predicted flame propagation velocity is observed between 1D and 3D simulations: contrary to what is seen in gaseous flames, including the curvature of the flame does not increase predicted flame speeds substantially. However, measured flame propagation velocity values exceed numerically obtained predictions excluding thermal radiation by a factor of three to four. To the authors’ knowledge, this discrepancy is exemplary for the difference between experimentally obtained values for flame propagation velocities, and predictions made using numerical simulation tools neglecting radiative heat transfer.</div><div>Accounting for radiation increases predicted flame propagation velocities, in the absence of confining boundaries, by approximately a factor of 10 which is in line with algebraic models for optically thick aerosols. In 3D simulations for the two finest iron powders in the experiments, including radiation and accounting for the presence of the confining tube wall results in an error of 11% and 35% with respect to measured flame propagation velocities, significantly smaller than predictions obtained excluding thermal radiation. Although these flames are not purely radiation-driven, inclusion of particle-to-particle radiative heat transfer enhances flame propagation velocities in simulations to values that correspond much better with experimental values than if radiation would not be taken into account.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113848"},"PeriodicalIF":5.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publication / Copyright Information 出版/版权信息
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-26 DOI: 10.1016/S0010-2180(24)00579-0
{"title":"Publication / Copyright Information","authors":"","doi":"10.1016/S0010-2180(24)00579-0","DOIUrl":"10.1016/S0010-2180(24)00579-0","url":null,"abstract":"","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113870"},"PeriodicalIF":5.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlating concurrent-flow flame spread rates in different pressure and oxygen conditions: Ground experiments and comparisons with previous micro-, partial, and normal gravities experiments 不同压力和氧气条件下并流火焰蔓延率的相关性:地面实验以及与以往微重力、部分重力和正常重力实验的比较
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-25 DOI: 10.1016/j.combustflame.2024.113880
Robin Neupane, Ya- Ting Liao
Ambient pressure and gravity are important parameters in buoyant flow that governs upward flame spread process. Based on the concept of pressure modelling, this experimental study investigates extinction and upward flame spread process of a thermally-thin solid fuel in different pressure and oxygen conditions. Experiments are performed in a combustion chamber in air at different pressures (ranging from 10 kPa to 100 kPa) and different oxygen molar fraction environment (9–21 %). As pressure increases, different burning behaviors are observed: no ignition, partial flame spread, steady flame spread, and accelerating flame spread. Similar trend is observed as the ambient oxygen molar fraction increases. In partial pressure conditions (e.g., 25–50 kPa), flames exhibit characteristics that are typically observed in micro- and partial gravity environments: blue and dim. Flame spread rate and sample burnt length are deduced and compared between different pressure and oxygen levels. Overall, the burning intensity and the flame spread rate decrease with the decrease in ambient pressure and oxygen. The decrease in flame spread rate at reduced pressure is attributed to increase in flame standoff distance and decrease in convective heat transfer to the solid, whereas the decrease in flame spread rate in reduced oxygen molar fraction environment is attributed to decrease in flame temperature. Lastly, current and previous studies performed at different ambient environments are correlated using the concept of flame standoff distance (δf), which is estimated using the theoretical viscous boundary layer thickness (δv). It was found that approximating δfδvfor forced flow and δf1/3δv for natural flow can predict the flame spread rate reasonably well for data obtained in micro-, partial, and normal gravities, for a wide range of environmental conditions away from extinction limits.
环境压力和重力是浮力流中影响火焰向上蔓延过程的重要参数。基于压力建模的概念,本实验研究调查了热稀薄固体燃料在不同压力和氧气条件下的熄灭和火焰向上蔓延过程。实验在不同压力(从 10 kPa 到 100 kPa)和不同氧气摩尔分数(9%-21%)环境下的空气燃烧室中进行。随着压力的增加,观察到不同的燃烧行为:不着火、部分火焰蔓延、稳定火焰蔓延和加速火焰蔓延。随着环境氧摩尔分数的增加,也观察到类似的趋势。在分压条件下(如 25-50 kPa),火焰表现出通常在微重力和分重力环境下观察到的特征:蓝色和暗淡。在不同的压力和氧气水平下,火焰蔓延率和样品燃烧长度均可推导和比较。总体而言,燃烧强度和火焰蔓延率随着环境压力和氧气含量的降低而降低。压力降低时火焰蔓延率降低的原因是火焰间距增加和固体对流传热减少,而氧气摩尔分数降低环境中火焰蔓延率降低的原因是火焰温度降低。最后,利用火焰对峙距离(δf)的概念将目前和以前在不同环境下进行的研究联系起来,而火焰对峙距离是利用理论粘性边界层厚度(δv)估算出来的。研究发现,对于在微重力、部分重力和正常重力条件下获得的数据,在远离熄灭极限的各种环境条件下,近似地计算强制流的δf∼δv 和自然流的δf∼1/3δv 可以合理地预测火焰蔓延率。
{"title":"Correlating concurrent-flow flame spread rates in different pressure and oxygen conditions: Ground experiments and comparisons with previous micro-, partial, and normal gravities experiments","authors":"Robin Neupane,&nbsp;Ya- Ting Liao","doi":"10.1016/j.combustflame.2024.113880","DOIUrl":"10.1016/j.combustflame.2024.113880","url":null,"abstract":"<div><div>Ambient pressure and gravity are important parameters in buoyant flow that governs upward flame spread process. Based on the concept of pressure modelling, this experimental study investigates extinction and upward flame spread process of a thermally-thin solid fuel in different pressure and oxygen conditions. Experiments are performed in a combustion chamber in air at different pressures (ranging from 10 kPa to 100 kPa) and different oxygen molar fraction environment (9–21 %). As pressure increases, different burning behaviors are observed: no ignition, partial flame spread, steady flame spread, and accelerating flame spread. Similar trend is observed as the ambient oxygen molar fraction increases. In partial pressure conditions (e.g., 25–50 kPa), flames exhibit characteristics that are typically observed in micro- and partial gravity environments: blue and dim. Flame spread rate and sample burnt length are deduced and compared between different pressure and oxygen levels. Overall, the burning intensity and the flame spread rate decrease with the decrease in ambient pressure and oxygen. The decrease in flame spread rate at reduced pressure is attributed to increase in flame standoff distance and decrease in convective heat transfer to the solid, whereas the decrease in flame spread rate in reduced oxygen molar fraction environment is attributed to decrease in flame temperature. Lastly, current and previous studies performed at different ambient environments are correlated using the concept of flame standoff distance (<span><math><mrow><msub><mi>δ</mi><mi>f</mi></msub><mrow><mo>)</mo></mrow></mrow></math></span>, which is estimated using the theoretical viscous boundary layer thickness (<span><math><mrow><msub><mi>δ</mi><mi>v</mi></msub><mrow><mo>)</mo></mrow></mrow></math></span>. It was found that approximating <span><math><mrow><msub><mi>δ</mi><mi>f</mi></msub><mo>∼</mo><msub><mi>δ</mi><mi>v</mi></msub><mspace></mspace></mrow></math></span>for forced flow and <span><math><mrow><msub><mi>δ</mi><mi>f</mi></msub><mo>∼</mo><mn>1</mn><mo>/</mo><mn>3</mn><mspace></mspace><msub><mi>δ</mi><mi>v</mi></msub></mrow></math></span> for natural flow can predict the flame spread rate reasonably well for data obtained in micro-, partial, and normal gravities, for a wide range of environmental conditions away from extinction limits.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113880"},"PeriodicalIF":5.8,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of noise intensity on early warning indicators of thermoacoustic instability: An experimental investigation on a lean-premixed combustion system 噪声强度对热声不稳定预警指标的影响:对贫油预混燃烧系统的实验研究
IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-11-25 DOI: 10.1016/j.combustflame.2024.113846
Neha Vishnoi , Richard Steinert , Aditya Saurabh , Christian Oliver Paschereit , Lipika Kabiraj
<div><div>In this work, we experimentally investigate the noise-induced dynamics of a lean premixed combustion system operating on natural gas–air mixtures that exhibit thermoacoustic instability via a subcritical Hopf bifurcation. The investigation is done before the bistable region with equivalence ratio (<span><math><mi>ϕ</mi></math></span>) as the control parameter. We analyze the acoustic pressure oscillations (<span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>) in the combustor and fluctuations in the heat release rate (<span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>) from the laminar quasi-flat flame at increasing levels of white noise. We show the effects of noise intensity on the reliability of various types of early warning indicators (EWIs) to predict the onset of the impending thermoacoustic oscillations. We investigate the indicators based on statistical measures (variance, skewness, and kurtosis), autocorrelation and spectral properties (coherence factor), system identification (growth/decay rates of <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>), multi-fractality (Hurst exponent), and time series complexity (permutation entropy and Jensen–Shannon complexity). The coherence factor, variance, and decay rates of <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> always increases as the system approaches thermoacoustic instability, indicating their robustness as an EWI under most noise levels. An increase in kurtosis cannot be employed as an EWI. Implementing autocorrelation, skewness, Hurst exponent, permutation entropy and Jensen–Shannon complexity as effective EWIs has limitations: they can be estimated accurately only from pressure oscillations (<span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>) data and work only above a particular threshold value of noise intensity. Our results have direct implication on early prediction and control of thermoacoustic instability in practical gas turbine combustors.</div><div><strong>Novelty and significance statement</strong></div><div>Developing effective early warning indicators (EWIs) to anticipate the onset of thermoacoustic instability is crucial for preventing potential damage and ensuring the reliable operation of lean premixed gas turbine combustion systems. In such systems, inherent noise dynamics undergo variations with changing operating conditions and combustor designs. Specifically, noise intensity increases as the system becomes more turbulent. In this study, we demonstrate that the inherent noise dynamics in a lean premixed combustion system play a crucial role in influencing the trends observed in early warning indicators of thermoacoustic instability. We address several key questions, including (a) whether comparative reliability assessments of different classes of EWIs exist, (b) the effect of vari
在这项工作中,我们通过实验研究了在天然气-空气混合物中运行的贫油预混燃烧系统的噪声诱导动力学,该系统通过次临界霍普夫分岔表现出热声不稳定性。研究是在以等效比 (ϕ) 为控制参数的双稳态区域之前进行的。我们分析了燃烧器中的声压振荡(p′),以及在白噪声水平不断增加的情况下,层流准平焰的热释放率(q′)的波动。我们展示了噪声强度对各类预警指标(EWIs)预测即将发生的热声振荡的可靠性的影响。我们根据统计量(方差、偏斜度和峰度)、自相关性和频谱特性(相干因子)、系统识别(p′的增长/衰减率)、多分形(赫斯特指数)和时间序列复杂性(包络熵和詹森-香农复杂性)对指标进行了研究。当系统接近热声不稳定性时,p′的相干系数、方差和衰减率总是增加,这表明它们在大多数噪声水平下作为 EWI 的稳健性。峰度的增加不能用作 EWI。采用自相关性、偏斜度、赫斯特指数、置换熵和詹森-香农复杂度作为有效的 EWI 有其局限性:它们只能从压力振荡(p′)数据中准确估算,而且只能在特定的噪声强度阈值以上起作用。我们的研究结果对实际燃气轮机燃烧器热声不稳定性的早期预测和控制有直接影响。新颖性和重要性声明开发有效的预警指标(EWIs)来预测热声不稳定性的发生,对于防止潜在的损害和确保贫油预混燃气轮机燃烧系统的可靠运行至关重要。在这类系统中,固有的噪声动态会随着运行条件和燃烧器设计的变化而变化。具体来说,噪声强度会随着系统变得更加湍流而增加。在本研究中,我们证明了贫油预混燃烧系统中的固有噪声动力学在影响热声不稳定性早期预警指标趋势方面起着至关重要的作用。我们解决了几个关键问题,包括:(a)是否存在不同类别预警系统的可靠性比较评估;(b)噪声特性的变化对预警系统功效的影响;以及(c)考虑到噪声特性取决于系统,甚至可能随着特定系统内运行条件的变化而变化,哪些预警系统最为可靠。这些信息对发动机设计人员/用户至关重要,有助于为燃气轮机燃烧系统开发稳健有效的监测系统。
{"title":"Effects of noise intensity on early warning indicators of thermoacoustic instability: An experimental investigation on a lean-premixed combustion system","authors":"Neha Vishnoi ,&nbsp;Richard Steinert ,&nbsp;Aditya Saurabh ,&nbsp;Christian Oliver Paschereit ,&nbsp;Lipika Kabiraj","doi":"10.1016/j.combustflame.2024.113846","DOIUrl":"10.1016/j.combustflame.2024.113846","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this work, we experimentally investigate the noise-induced dynamics of a lean premixed combustion system operating on natural gas–air mixtures that exhibit thermoacoustic instability via a subcritical Hopf bifurcation. The investigation is done before the bistable region with equivalence ratio (&lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;) as the control parameter. We analyze the acoustic pressure oscillations (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;) in the combustor and fluctuations in the heat release rate (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;) from the laminar quasi-flat flame at increasing levels of white noise. We show the effects of noise intensity on the reliability of various types of early warning indicators (EWIs) to predict the onset of the impending thermoacoustic oscillations. We investigate the indicators based on statistical measures (variance, skewness, and kurtosis), autocorrelation and spectral properties (coherence factor), system identification (growth/decay rates of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;), multi-fractality (Hurst exponent), and time series complexity (permutation entropy and Jensen–Shannon complexity). The coherence factor, variance, and decay rates of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; always increases as the system approaches thermoacoustic instability, indicating their robustness as an EWI under most noise levels. An increase in kurtosis cannot be employed as an EWI. Implementing autocorrelation, skewness, Hurst exponent, permutation entropy and Jensen–Shannon complexity as effective EWIs has limitations: they can be estimated accurately only from pressure oscillations (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;) data and work only above a particular threshold value of noise intensity. Our results have direct implication on early prediction and control of thermoacoustic instability in practical gas turbine combustors.&lt;/div&gt;&lt;div&gt;&lt;strong&gt;Novelty and significance statement&lt;/strong&gt;&lt;/div&gt;&lt;div&gt;Developing effective early warning indicators (EWIs) to anticipate the onset of thermoacoustic instability is crucial for preventing potential damage and ensuring the reliable operation of lean premixed gas turbine combustion systems. In such systems, inherent noise dynamics undergo variations with changing operating conditions and combustor designs. Specifically, noise intensity increases as the system becomes more turbulent. In this study, we demonstrate that the inherent noise dynamics in a lean premixed combustion system play a crucial role in influencing the trends observed in early warning indicators of thermoacoustic instability. We address several key questions, including (a) whether comparative reliability assessments of different classes of EWIs exist, (b) the effect of vari","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113846"},"PeriodicalIF":5.8,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combustion and Flame
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1