Taylor wavelet quasilinearization method for solving tumor growth model of fractional order

IF 3.2 Q3 Mathematics Results in Control and Optimization Pub Date : 2024-06-01 DOI:10.1016/j.rico.2024.100437
Pooja Yadav , Shah Jahan , Mohammad Izadi
{"title":"Taylor wavelet quasilinearization method for solving tumor growth model of fractional order","authors":"Pooja Yadav ,&nbsp;Shah Jahan ,&nbsp;Mohammad Izadi","doi":"10.1016/j.rico.2024.100437","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an innovative approach combining Taylor wavelet with quasilinearization, aiming to enhance the fractional-order tumor growth model. To explore the prediction of tumor growth, the fractional order Taylor wavelet (FOTW) technique is employed. Block pulse functions (BPFs) are used for constructing a fractional order operational matrix of integration. Next, the quasilinearization method is employed to transform the given equations into a linear algebraic system of equations. To show the performance of the FOTW based approach, the numerical results are obtained and discussed geometrically. The outcomes show that fractional models work more effectively, and can be further explored.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"15 ","pages":"Article 100437"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000675/pdfft?md5=e7cb7c367b1394c46810d2d0a402e696&pid=1-s2.0-S2666720724000675-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative approach combining Taylor wavelet with quasilinearization, aiming to enhance the fractional-order tumor growth model. To explore the prediction of tumor growth, the fractional order Taylor wavelet (FOTW) technique is employed. Block pulse functions (BPFs) are used for constructing a fractional order operational matrix of integration. Next, the quasilinearization method is employed to transform the given equations into a linear algebraic system of equations. To show the performance of the FOTW based approach, the numerical results are obtained and discussed geometrically. The outcomes show that fractional models work more effectively, and can be further explored.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于求解分数阶肿瘤生长模型的泰勒小波准线性化方法
本研究介绍了泰勒小波与准线性化相结合的创新方法,旨在增强分数阶肿瘤生长模型。为了探索肿瘤生长的预测,我们采用了分数阶泰勒小波(FOTW)技术。块脉冲函数(BPF)用于构建分数阶积分运算矩阵。然后,采用准线性化方法将给定方程转化为线性代数方程组。为了展示基于 FOTW 方法的性能,我们获得了数值结果并进行了几何讨论。结果表明,分数模型更有效,可以进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Stability and weighted l2-gain analysis of discrete-time switched T–S fuzzy systems based on admissible-edge-dependent weighted average dwell time strategy Image classification and object detection complexity optimization: Exploring deep learning models on camera trap and surveillance clips Stability and optimizing the treatment control of tuberculosis model via numerical approach Optimal fractional order PI controller design for time-delayed processes An innovative two-stage method for balancing time, cost, quality, and additional objectives in multi-mode resource-constrained project scheduling: A case study of a food product packaging production line project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1