Ultra-efficient deuterium separation under ambient conditions by a crystalline porous organic framework-Pd nanoparticle hybrid

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-07-03 DOI:10.1016/j.matt.2024.05.008
Jingru Fu , Ying Wang , Saikat Das , Shuai Zhang , Xiqi Zhang , Hongyan Xiao , Jun Li , Teng Ben , Lei Jiang
{"title":"Ultra-efficient deuterium separation under ambient conditions by a crystalline porous organic framework-Pd nanoparticle hybrid","authors":"Jingru Fu ,&nbsp;Ying Wang ,&nbsp;Saikat Das ,&nbsp;Shuai Zhang ,&nbsp;Xiqi Zhang ,&nbsp;Hongyan Xiao ,&nbsp;Jun Li ,&nbsp;Teng Ben ,&nbsp;Lei Jiang","doi":"10.1016/j.matt.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>For the hydrogen isotopes of protium, deuterium, and tritium, separation of deuterium gas (D<sub>2</sub>) from the mixture is of critical importance. High-purity D<sub>2</sub> can be utilized for nonradioactive isotope tracking, neutron scattering, and nuclear fusion. Current approaches for D<sub>2</sub> separation with Pd membranes and quantum sieving-based nanoporous materials are performed at high (673 K) and ultralow (30 K) temperatures, respectively, both of which consume significant amounts of energy and exhibit low separation efficiency. Thus, efficient D<sub>2</sub> separation under ambient conditions remains a challenge. In this study, high-purity D<sub>2</sub> is efficiently extracted from an isotopic mixture under ambient conditions by spatial confinement between Pd nanoparticles and a crystalline porous organic framework (CPOF-1) skeleton. This study provides a novel concept for deuterium separation with low energy consumption, low cost, and high efficiency, and it will be of great significance for practical applications.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524002339","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For the hydrogen isotopes of protium, deuterium, and tritium, separation of deuterium gas (D2) from the mixture is of critical importance. High-purity D2 can be utilized for nonradioactive isotope tracking, neutron scattering, and nuclear fusion. Current approaches for D2 separation with Pd membranes and quantum sieving-based nanoporous materials are performed at high (673 K) and ultralow (30 K) temperatures, respectively, both of which consume significant amounts of energy and exhibit low separation efficiency. Thus, efficient D2 separation under ambient conditions remains a challenge. In this study, high-purity D2 is efficiently extracted from an isotopic mixture under ambient conditions by spatial confinement between Pd nanoparticles and a crystalline porous organic framework (CPOF-1) skeleton. This study provides a novel concept for deuterium separation with low energy consumption, low cost, and high efficiency, and it will be of great significance for practical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结晶多孔有机框架-钯纳米粒子混合物在环境条件下实现超高效氘分离
对于氕、氘和氚的氢同位素来说,从混合物中分离出氘气(D2)至关重要。高纯度 D2 可用于非放射性同位素跟踪、中子散射和核聚变。目前使用钯膜和基于量子筛分的纳米多孔材料分离 D2 的方法分别是在高温(673 K)和超低温(30 K)下进行的,这两种方法都会消耗大量能量,并且分离效率较低。因此,在环境条件下高效分离 D2 仍是一项挑战。在本研究中,通过钯纳米粒子与结晶多孔有机框架(CPOF-1)骨架之间的空间限制,在环境条件下从同位素混合物中高效提取出了高纯度的 D2。这项研究提供了一种低能耗、低成本、高效率的氘分离新概念,对实际应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Spiro-materials with aggregation-induced emission Arene-perfluoroarene interaction: Properties, constructions, and applications in materials science Recognition and “forbidden city” efforts Let’s get cracking – Solar ethene and hydrogen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1