Computationally-efficient linear scheme for overlap time-gating spatial frequency domain diffuse optical tomography using an analytical diffusion model.
{"title":"Computationally-efficient linear scheme for overlap time-gating spatial frequency domain diffuse optical tomography using an analytical diffusion model.","authors":"Yihan Dong, Wenxing Bai, Yaru Zhang, Limin Zhang, Dongyuan Liu, Feng Gao","doi":"10.1364/BOE.523972","DOIUrl":null,"url":null,"abstract":"<p><p>Time-domain (TD) spatial frequency domain (SFD) diffuse optical tomography (DOT) potentially enables laminar tomography of both the absorption and scattering coefficients. Its full time-resolved-data scheme is expected to enhance performances of the image reconstruction but poses heavy computational costs and also susceptible signal-to-noise ratio (SNR) limits, as compared to the featured-data one. We herein propose a computationally-efficient linear scheme of TD-SFD-DOT, where an analytical solution to the TD phasor diffusion equation for semi-infinite geometry is derived and used to formulate the Jacobian matrices with regard to overlap time-gating data of the time-resolved measurement for improved SNR and reduced redundancy. For better contrasting the absorption and scattering and widely adapted to practically-available resources, we develop an algebraic-reconstruction-technique-based two-step linear inversion procedure with support of a balanced memory-speed strategy and multi-core parallel computation. Both simulations and phantom experiments are performed to validate the effectiveness of the proposed TD-SFD-DOT method and show an achieved tomographic reconstruction at a relative depth resolution of ∼4 mm.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.523972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-domain (TD) spatial frequency domain (SFD) diffuse optical tomography (DOT) potentially enables laminar tomography of both the absorption and scattering coefficients. Its full time-resolved-data scheme is expected to enhance performances of the image reconstruction but poses heavy computational costs and also susceptible signal-to-noise ratio (SNR) limits, as compared to the featured-data one. We herein propose a computationally-efficient linear scheme of TD-SFD-DOT, where an analytical solution to the TD phasor diffusion equation for semi-infinite geometry is derived and used to formulate the Jacobian matrices with regard to overlap time-gating data of the time-resolved measurement for improved SNR and reduced redundancy. For better contrasting the absorption and scattering and widely adapted to practically-available resources, we develop an algebraic-reconstruction-technique-based two-step linear inversion procedure with support of a balanced memory-speed strategy and multi-core parallel computation. Both simulations and phantom experiments are performed to validate the effectiveness of the proposed TD-SFD-DOT method and show an achieved tomographic reconstruction at a relative depth resolution of ∼4 mm.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.