Ju-Fang Chang, Nils Wellhausen, Nils W Engel, Jack H Landmann, Caitlin R Hopkins, January Salas-McKee, Adham S Bear, Mehmet E Selli, Sangya Agarwal, Julie K Jadlowsky, Gerald P Linette, Saar Gill, Carl H June, Joseph A Fraietta, Nathan Singh
{"title":"Identification of Core Techniques That Enhance Genome Editing of Human T Cells Expressing Synthetic Antigen Receptors.","authors":"Ju-Fang Chang, Nils Wellhausen, Nils W Engel, Jack H Landmann, Caitlin R Hopkins, January Salas-McKee, Adham S Bear, Mehmet E Selli, Sangya Agarwal, Julie K Jadlowsky, Gerald P Linette, Saar Gill, Carl H June, Joseph A Fraietta, Nathan Singh","doi":"10.1158/2326-6066.CIR-24-0251","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing technologies have seen remarkable progress in recent years, enabling precise regulation of exogenous and endogenous genes. These advances have been extensively applied to the engineering of human T lymphocytes, leading to the development of practice changing therapies for patients with cancer and the promise of synthetic immune cell therapies for a variety of nonmalignant diseases. Many distinct conceptual and technical approaches have been used to edit T-cell genomes, however targeted assessments of which techniques are most effective for manufacturing, gene editing, and transgene expression are rarely reported. Through extensive comparative evaluation, we identified methods that most effectively enhance engineering of research-scale and preclinical T-cell products at critical stages of manufacturing.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1136-1146"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0251","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genome editing technologies have seen remarkable progress in recent years, enabling precise regulation of exogenous and endogenous genes. These advances have been extensively applied to the engineering of human T lymphocytes, leading to the development of practice changing therapies for patients with cancer and the promise of synthetic immune cell therapies for a variety of nonmalignant diseases. Many distinct conceptual and technical approaches have been used to edit T-cell genomes, however targeted assessments of which techniques are most effective for manufacturing, gene editing, and transgene expression are rarely reported. Through extensive comparative evaluation, we identified methods that most effectively enhance engineering of research-scale and preclinical T-cell products at critical stages of manufacturing.
近年来,基因组编辑技术取得了显著进展,实现了对外源和内源基因的精确调控。这些进展已被广泛应用于人类 T 淋巴细胞的工程设计,为癌症患者开发出了改变治疗方法的疗法,并有望为各种非恶性疾病开发出合成免疫细胞疗法。许多不同的概念和技术方法已被用于编辑 T 细胞基因组,但对哪些技术在制造、基因编辑和转基因表达方面最有效的针对性评估却鲜有报道。通过广泛的比较评估,我们确定了在制造的关键阶段最有效地提高研究规模和临床前 T 细胞产品工程的方法。
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.