Assessing screw length impact on bone strain in proximal humerus fracture fixation via surrogate modelling

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-06-12 DOI:10.1002/cnm.3840
Daniela Mini, Karen J. Reynolds, Mark Taylor
{"title":"Assessing screw length impact on bone strain in proximal humerus fracture fixation via surrogate modelling","authors":"Daniela Mini,&nbsp;Karen J. Reynolds,&nbsp;Mark Taylor","doi":"10.1002/cnm.3840","DOIUrl":null,"url":null,"abstract":"<p>A high failure rate is associated with fracture plates in proximal humerus fractures. The causes of failure remain unclear due to the complexity of the problem including the number and position of the screws, their length and orientation in the space. Finite element (FE) analysis has been used for the analysis of plating of proximal humeral fractures, but due to computational costs is unable to fully explore all potential screw combinations. Surrogate modelling is a viable solution, having the potential to significantly reduce the computational cost whilst requiring a moderate number of training sets. This study aimed to develop adaptive neural network (ANN)-based surrogate models to predict the strain in the humeral bone as a result of changing the length of the screws. The ANN models were trained using data from FE simulations of a single humerus, and after defining the best training sample size, multiple and single-output models were developed. The best performing ANN model was used to predict all the possible screw length configurations. The ANN predictions were compared with the FE results of unseen data, showing a good correlation (<i>R</i><sup>2</sup> = 0.99) and low levels of error (RMSE = 0.51%–1.83% strain). The ANN predictions of all possible screw length configurations showed that the screw that provided the medial support was the most influential on the predicted strain. Overall, the ANN-based surrogate model accurately captured bone strains and has the potential to be used for more complex problems with a larger number of variables.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3840","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A high failure rate is associated with fracture plates in proximal humerus fractures. The causes of failure remain unclear due to the complexity of the problem including the number and position of the screws, their length and orientation in the space. Finite element (FE) analysis has been used for the analysis of plating of proximal humeral fractures, but due to computational costs is unable to fully explore all potential screw combinations. Surrogate modelling is a viable solution, having the potential to significantly reduce the computational cost whilst requiring a moderate number of training sets. This study aimed to develop adaptive neural network (ANN)-based surrogate models to predict the strain in the humeral bone as a result of changing the length of the screws. The ANN models were trained using data from FE simulations of a single humerus, and after defining the best training sample size, multiple and single-output models were developed. The best performing ANN model was used to predict all the possible screw length configurations. The ANN predictions were compared with the FE results of unseen data, showing a good correlation (R2 = 0.99) and low levels of error (RMSE = 0.51%–1.83% strain). The ANN predictions of all possible screw length configurations showed that the screw that provided the medial support was the most influential on the predicted strain. Overall, the ANN-based surrogate model accurately captured bone strains and has the potential to be used for more complex problems with a larger number of variables.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过替代模型评估螺钉长度对肱骨近端骨折固定中骨应变的影响。
在肱骨近端骨折中,骨折钢板的失败率很高。由于问题的复杂性(包括螺钉的数量和位置、长度以及在空间中的方向),失败的原因仍不清楚。有限元(FE)分析已被用于分析肱骨近端骨折的钢板,但由于计算成本的原因,无法充分探索所有潜在的螺钉组合。代用模型是一种可行的解决方案,有可能显著降低计算成本,同时只需要适量的训练集。本研究旨在开发基于自适应神经网络(ANN)的代用模型,以预测改变螺钉长度后肱骨中的应变。使用单个肱骨的有限元模拟数据对自适应神经网络模型进行了训练,在确定最佳训练样本大小后,开发了多输出和单输出模型。性能最好的 ANN 模型用于预测所有可能的螺钉长度配置。将 ANN 预测结果与未见数据的 FE 结果进行比较,结果显示相关性良好(R2 = 0.99),误差较小(RMSE = 0.51%-1.83% 应变)。对所有可能的螺钉长度配置进行的 ANN 预测表明,提供内侧支撑的螺钉对预测应变的影响最大。总之,基于 ANN 的代用模型准确地捕捉到了骨应变,并有可能用于变量较多的更复杂问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Therapeutic Effect of Targeted Deployment Filling Coils in the Treatment of Intracranial Aneurysms. Modeling Fibrin Accumulation on Flow-Diverting Devices for Intracranial Aneurysms. A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data. A semi-automatic method for block-structured hexahedral meshing of aortic dissections. Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1