Optimal two-phase sampling for comparing correlated areas under the ROC curves of two screening tests in the presence of verification bias.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-06-13 DOI:10.1080/10543406.2024.2358803
Yougui Wu
{"title":"Optimal two-phase sampling for comparing correlated areas under the ROC curves of two screening tests in the presence of verification bias.","authors":"Yougui Wu","doi":"10.1080/10543406.2024.2358803","DOIUrl":null,"url":null,"abstract":"<p><p>The accuracy of a screening test is often measured by the area under the receiver characteristic (ROC) curve (AUC) of a screening test. Two-phase designs have been widely used in diagnostic studies for estimating one single AUC and comparing two AUCs where the screening test results are measured for a large sample (Phase one sample) while the disease status is only verified for a subset of Phase one sample (Phase two sample) by a gold standard. In this paper, we consider the optimal two-phase sampling design for comparing the performance of two ordinal screening tests in classifying disease status. Specifically, we derive an analytical variance formula for the AUC difference estimator and use it to find the optimal sampling probabilities that minimize the variance formula for the AUC difference estimator. According to the proposed optimal two-phase design, the strata with the levels of two tests far apart from each other should be over-sampled while the strata with the levels of two tests close to each other should be under-sampled. Simulation results indicate that two-phase sampling under optimal allocation (OA) achieves a substantial amount of variance reduction, compared with two-phase sampling under proportional allocation (PA). Furthermore, in comparison with a one-phase random sampling, two-phase sampling under OA or PA has a clear advantage in reducing the variance of AUC difference estimator when the variances of the two screening test results in the disease population differ greatly from their counterparts in non-disease population.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-17"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2358803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of a screening test is often measured by the area under the receiver characteristic (ROC) curve (AUC) of a screening test. Two-phase designs have been widely used in diagnostic studies for estimating one single AUC and comparing two AUCs where the screening test results are measured for a large sample (Phase one sample) while the disease status is only verified for a subset of Phase one sample (Phase two sample) by a gold standard. In this paper, we consider the optimal two-phase sampling design for comparing the performance of two ordinal screening tests in classifying disease status. Specifically, we derive an analytical variance formula for the AUC difference estimator and use it to find the optimal sampling probabilities that minimize the variance formula for the AUC difference estimator. According to the proposed optimal two-phase design, the strata with the levels of two tests far apart from each other should be over-sampled while the strata with the levels of two tests close to each other should be under-sampled. Simulation results indicate that two-phase sampling under optimal allocation (OA) achieves a substantial amount of variance reduction, compared with two-phase sampling under proportional allocation (PA). Furthermore, in comparison with a one-phase random sampling, two-phase sampling under OA or PA has a clear advantage in reducing the variance of AUC difference estimator when the variances of the two screening test results in the disease population differ greatly from their counterparts in non-disease population.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在存在验证偏差的情况下,比较两种筛选测试 ROC 曲线下相关区域的最佳两阶段采样。
筛查检验的准确性通常通过筛查检验的接收者特征曲线(ROC)下面积(AUC)来衡量。两阶段设计已广泛应用于诊断研究中,用于估算一个单一的 AUC 值和比较两个 AUC 值,其中筛查检验结果是对一个大样本(第一阶段样本)进行测量的,而疾病状态仅由一个金标准对第一阶段样本的一个子集(第二阶段样本)进行验证。在本文中,我们考虑了比较两种序数筛查检验在疾病状态分类中的表现的最佳两阶段抽样设计。具体来说,我们推导出 AUC 差异估计器的分析方差公式,并利用该公式找到使 AUC 差异估计器方差公式最小化的最佳抽样概率。根据所提出的最佳两阶段设计,两个测试水平相距较远的分层应过度采样,而两个测试水平相近的分层应减少采样。模拟结果表明,与比例分配(PA)下的两阶段抽样相比,最优分配(OA)下的两阶段抽样能大幅减少方差。此外,与单阶段随机抽样相比,当疾病人群中两个筛查检验结果的方差与非疾病人群中两个筛查检验结果的方差相差很大时,OA 或 PA 下的两阶段抽样在降低 AUC 差异估计器方差方面具有明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1