Soft robotic platform for progressive and reversible aortic constriction in a small-animal model

IF 26.1 1区 计算机科学 Q1 ROBOTICS Science Robotics Pub Date : 2024-06-12 DOI:10.1126/scirobotics.adj9769
Luca Rosalia, Sophie X. Wang, Caglar Ozturk, Wei Huang, Jean Bonnemain, Rachel Beatty, Garry P. Duffy, Christopher T. Nguyen, Ellen T. Roche
{"title":"Soft robotic platform for progressive and reversible aortic constriction in a small-animal model","authors":"Luca Rosalia,&nbsp;Sophie X. Wang,&nbsp;Caglar Ozturk,&nbsp;Wei Huang,&nbsp;Jean Bonnemain,&nbsp;Rachel Beatty,&nbsp;Garry P. Duffy,&nbsp;Christopher T. Nguyen,&nbsp;Ellen T. Roche","doi":"10.1126/scirobotics.adj9769","DOIUrl":null,"url":null,"abstract":"<div >Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 91","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adj9769","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在小动物模型中实现渐进和可逆主动脉收缩的软机器人平台。
我们对左心室压力过载导致的心脏重塑过程的了解主要来自主动脉束带的动物模型。然而,这些研究无法控制疾病的进展和逆转,从而阻碍了它们的临床意义。在这里,我们描述了一种基于植入式可膨胀致动器的渐进和可逆主动脉绑扎方法,这种致动器可进行微调,以调节大鼠模型中的主动脉绑扎和拆线。通过导管检查、成像和组织学研究,我们证明了我们的平台能以可控的方式再现与压力过载相关的血流动力学和结构变化。我们利用软机器人技术实现了无创的主动脉剥脱,证明由于生物力学刺激的停止,这些变化可以部分逆转。通过再现纵向疾病进展和可逆性,这种动物模型可以阐明心脏重塑的基本机制,并优化压力过载干预的时机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
期刊最新文献
Haptiknit: Distributed stiffness knitting for wearable haptics Counterfactual rewards promote collective transport using individually controlled swarm microrobots A call for diversity, equity, and inclusion in robotics. Erratum for the Research Article "Restoration of grasping in an upper limb amputee using the myokinetic prosthesis with implanted magnets" by M. Gherardini et al. Even teleoperated robots are discriminated against in science fictions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1