首页 > 最新文献

Science Robotics最新文献

英文 中文
A twist of the tail in turning maneuvers of bird-inspired drones 受鸟类启发的无人机在转弯时尾巴一扭
IF 25 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-20 DOI: 10.1126/scirobotics.ado3890
Hoang-Vu Phan, Dario Floreano
A banked turn is a common flight maneuver observed in birds and aircraft. To initiate the turn, whereas traditional aircraft rely on the wing ailerons, most birds use a variety of asymmetric wing-morphing control techniques to roll their bodies and thus redirect the lift vector to the direction of the turn. Nevertheless, when searching for prey, soaring raptors execute steady banked turns without exhibiting observable wing movements apart from the tail twisting around the body axis. Although tail twisting can compensate for adverse yaw, functioning similarly to the vertical tail in aircraft, how raptors use only tail twisting to perform banked turns is still not well understood. Here, we developed and used a raptor-inspired feathered drone to find that the proximity of the tail to the wings causes asymmetric wing-induced flows over the twisted tail and thus lift asymmetry, resulting in both roll and yaw moments sufficient to coordinate banked turns. Moreover, twisting the tail induces a nose-up pitch moment that increases the angle of attack of the wings, thereby generating more lift to compensate for losses caused by the banking motion. Flight experiments confirm the effectiveness of tail twist to control not only low-speed steady banked turns but also high-speed sharp turns by means of coordinated tail twist and pitch with asymmetric wing shape morphing. These findings contribute to the understanding of avian flight behaviors that are difficult to study in controlled laboratory settings and provide effective control strategies for agile drones with morphing aerial surfaces.
倾斜转弯是鸟类和飞机常见的飞行动作。启动转弯时,传统飞机依靠机翼副翼,而大多数鸟类则使用各种不对称的机翼变形控制技术来滚动身体,从而将升力矢量转向转弯方向。然而,翱翔的猛禽在搜寻猎物时,除了尾部绕身体轴线扭转外,不会出现可观察到的翅膀运动,而是执行稳定的倾斜转弯。虽然尾部扭转可以补偿不利的偏航,其功能类似于飞机的垂直尾翼,但人们对猛禽如何仅利用尾部扭转来进行倾斜转弯仍不甚了解。在这里,我们开发并使用了一种受猛禽启发的带羽毛无人机,发现尾部靠近机翼会导致扭曲尾部上的机翼诱导气流不对称,从而导致升力不对称,从而产生足以协调倾斜转弯的滚转力矩和偏航力矩。此外,扭转尾翼还能产生机头向上的俯仰力矩,从而增大机翼的攻角,产生更大的升力来弥补倾斜运动造成的损失。飞行实验证实,通过协调尾部扭转和俯仰以及非对称翼型变形,尾部扭转不仅能有效控制低速稳定倾斜转弯,还能有效控制高速急转弯。这些发现有助于理解难以在受控实验室环境中研究的鸟类飞行行为,并为具有变形气动表面的敏捷无人机提供了有效的控制策略。
{"title":"A twist of the tail in turning maneuvers of bird-inspired drones","authors":"Hoang-Vu Phan, Dario Floreano","doi":"10.1126/scirobotics.ado3890","DOIUrl":"https://doi.org/10.1126/scirobotics.ado3890","url":null,"abstract":"A banked turn is a common flight maneuver observed in birds and aircraft. To initiate the turn, whereas traditional aircraft rely on the wing ailerons, most birds use a variety of asymmetric wing-morphing control techniques to roll their bodies and thus redirect the lift vector to the direction of the turn. Nevertheless, when searching for prey, soaring raptors execute steady banked turns without exhibiting observable wing movements apart from the tail twisting around the body axis. Although tail twisting can compensate for adverse yaw, functioning similarly to the vertical tail in aircraft, how raptors use only tail twisting to perform banked turns is still not well understood. Here, we developed and used a raptor-inspired feathered drone to find that the proximity of the tail to the wings causes asymmetric wing-induced flows over the twisted tail and thus lift asymmetry, resulting in both roll and yaw moments sufficient to coordinate banked turns. Moreover, twisting the tail induces a nose-up pitch moment that increases the angle of attack of the wings, thereby generating more lift to compensate for losses caused by the banking motion. Flight experiments confirm the effectiveness of tail twist to control not only low-speed steady banked turns but also high-speed sharp turns by means of coordinated tail twist and pitch with asymmetric wing shape morphing. These findings contribute to the understanding of avian flight behaviors that are difficult to study in controlled laboratory settings and provide effective control strategies for agile drones with morphing aerial surfaces.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"18 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bird-inspired reflexive morphing enables rudderless flight 受鸟类启发的反射变形实现了无舵飞行
IF 25 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-20 DOI: 10.1126/scirobotics.ado4535
Eric Chang, Diana D. Chin, David Lentink
Gliding birds lack a vertical tail, yet they fly stably rudderless in turbulence without needing discrete flaps to steer. In contrast, nearly all airplanes need vertical tails to damp Dutch roll oscillations and to control yaw. The few exceptions that lack a vertical tail either leverage differential drag-based yaw actuators or their fixed planforms are carefully tuned for passively stable Dutch roll and proverse yaw. Biologists hypothesize that birds stabilize and control gliding flight without rudders by using their wing and tail reflexes, but no rudderless airplane has a morphing wing or tail that can change shape like a bird. Our rudderless biohybrid robot, PigeonBot II, can damp its Dutch roll instability (caused by lacking a vertical tail) and control flight by morphing its biomimetic wing and tail reflexively like a bird. The bird-inspired adaptive reflexive controller was tuned in a wind tunnel to mitigate turbulent perturbations, which enabled PigeonBot II to fly autonomously in the atmosphere with pigeon-like poses. This work is a mechanistic confirmation of how birds accomplish rudderless flight via reflex functions, and it can inspire rudderless aircraft with reduced radar signature and increased efficacy.
滑翔翼鸟类没有垂直尾翼,但它们在乱流中却能稳定地无舵飞行,而不需要分散的襟翼来转向。相比之下,几乎所有飞机都需要垂直尾翼来抑制荷兰式滚转振荡并控制偏航。少数没有垂直尾翼的飞机要么利用了基于阻力的差动式偏航致动器,要么对其固定翼形进行了精心调整,以实现被动稳定的荷兰式滚转和逆向偏航。根据生物学家的假设,鸟类在没有方向舵的情况下,可以利用翅膀和尾部的反射来稳定和控制滑翔飞行,但没有一种无舵飞机拥有像鸟类一样可以改变形状的变形翅膀或尾部。我们的无舵生物混合机器人 PigeonBot II 可以抑制荷兰式的滚动不稳定性(由于缺乏垂直尾翼),并通过像鸟类一样反射性地变形其仿生翅膀和尾翼来控制飞行。受鸟类启发的自适应反射控制器在风洞中进行了调整,以减轻湍流扰动,从而使 PigeonBot II 能够在大气中以鸽子般的姿势自主飞行。这项工作从机理上证实了鸟类是如何通过反射功能实现无舵飞行的,它可以为无舵飞行器提供灵感,减少雷达信号并提高飞行效率。
{"title":"Bird-inspired reflexive morphing enables rudderless flight","authors":"Eric Chang, Diana D. Chin, David Lentink","doi":"10.1126/scirobotics.ado4535","DOIUrl":"https://doi.org/10.1126/scirobotics.ado4535","url":null,"abstract":"Gliding birds lack a vertical tail, yet they fly stably rudderless in turbulence without needing discrete flaps to steer. In contrast, nearly all airplanes need vertical tails to damp Dutch roll oscillations and to control yaw. The few exceptions that lack a vertical tail either leverage differential drag-based yaw actuators or their fixed planforms are carefully tuned for passively stable Dutch roll and proverse yaw. Biologists hypothesize that birds stabilize and control gliding flight without rudders by using their wing and tail reflexes, but no rudderless airplane has a morphing wing or tail that can change shape like a bird. Our rudderless biohybrid robot, PigeonBot II, can damp its Dutch roll instability (caused by lacking a vertical tail) and control flight by morphing its biomimetic wing and tail reflexively like a bird. The bird-inspired adaptive reflexive controller was tuned in a wind tunnel to mitigate turbulent perturbations, which enabled PigeonBot II to fly autonomously in the atmosphere with pigeon-like poses. This work is a mechanistic confirmation of how birds accomplish rudderless flight via reflex functions, and it can inspire rudderless aircraft with reduced radar signature and increased efficacy.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"71 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NeuralFeels with neural fields: Visuotactile perception for in-hand manipulation 神经感觉与神经场手部操作的视觉触觉感知
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-13 DOI: 10.1126/scirobotics.adl0628
Sudharshan Suresh, Haozhi Qi, Tingfan Wu, Taosha Fan, Luis Pineda, Mike Lambeta, Jitendra Malik, Mrinal Kalakrishnan, Roberto Calandra, Michael Kaess, Joseph Ortiz, Mustafa Mukadam
To achieve human-level dexterity, robots must infer spatial awareness from multimodal sensing to reason over contact interactions. During in-hand manipulation of novel objects, such spatial awareness involves estimating the object’s pose and shape. The status quo for in-hand perception primarily uses vision and is restricted to tracking a priori known objects. Moreover, visual occlusion of objects in hand is imminent during manipulation, preventing current systems from pushing beyond tasks without occlusion. We combined vision and touch sensing on a multifingered hand to estimate an object’s pose and shape during in-hand manipulation. Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem. We studied multimodal in-hand perception in simulation and the real world, interacting with different objects via a proprioception-driven policy. Our experiments showed final reconstruction F scores of 81% and average pose drifts of 4.7 millimeters, which was further reduced to 2.3 millimeters with known object models. In addition, we observed that, under heavy visual occlusion, we could achieve improvements in tracking up to 94% compared with vision-only methods. Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation. We release our evaluation dataset of 70 experiments, FeelSight, as a step toward benchmarking in this domain. Our neural representation driven by multimodal sensing can serve as a perception backbone toward advancing robot dexterity.
要达到人类的灵巧程度,机器人必须通过多模态传感来推断空间意识,从而对接触互动进行推理。在用手操作新物体的过程中,这种空间感知包括估计物体的姿势和形状。手部感知的现状主要是使用视觉,而且仅限于跟踪先验的已知物体。此外,在操作过程中,手持物体的视觉遮挡问题迫在眉睫,使得当前的系统无法在没有遮挡的情况下完成更多任务。我们将多指手部的视觉和触摸感应结合起来,在手部操作过程中估计物体的姿势和形状。我们的方法,即 NeuralFeels,通过在线学习神经场来编码物体的几何形状,并通过优化姿势图问题来联合跟踪它。我们研究了模拟和真实世界中的多模态手部感知,通过本体感觉驱动策略与不同物体进行交互。我们的实验表明,最终的重建 F 分数为 81%,平均姿势漂移为 4.7 毫米,在已知物体模型的情况下,漂移进一步减少到 2.3 毫米。此外,我们还观察到,在严重视觉遮挡的情况下,与纯视觉方法相比,我们的跟踪性能提高了 94%。我们的研究结果表明,在手部操作过程中,触摸至少可以完善视觉估计,最好还能消除视觉估计的歧义。我们发布了由 70 个实验组成的评估数据集 FeelSight,以此作为该领域的基准。我们的神经表征由多模态传感驱动,可以作为感知骨干,提高机器人的灵巧性。
{"title":"NeuralFeels with neural fields: Visuotactile perception for in-hand manipulation","authors":"Sudharshan Suresh,&nbsp;Haozhi Qi,&nbsp;Tingfan Wu,&nbsp;Taosha Fan,&nbsp;Luis Pineda,&nbsp;Mike Lambeta,&nbsp;Jitendra Malik,&nbsp;Mrinal Kalakrishnan,&nbsp;Roberto Calandra,&nbsp;Michael Kaess,&nbsp;Joseph Ortiz,&nbsp;Mustafa Mukadam","doi":"10.1126/scirobotics.adl0628","DOIUrl":"10.1126/scirobotics.adl0628","url":null,"abstract":"<div >To achieve human-level dexterity, robots must infer spatial awareness from multimodal sensing to reason over contact interactions. During in-hand manipulation of novel objects, such spatial awareness involves estimating the object’s pose and shape. The status quo for in-hand perception primarily uses vision and is restricted to tracking a priori known objects. Moreover, visual occlusion of objects in hand is imminent during manipulation, preventing current systems from pushing beyond tasks without occlusion. We combined vision and touch sensing on a multifingered hand to estimate an object’s pose and shape during in-hand manipulation. Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem. We studied multimodal in-hand perception in simulation and the real world, interacting with different objects via a proprioception-driven policy. Our experiments showed final reconstruction <i>F</i> scores of 81% and average pose drifts of 4.7 millimeters, which was further reduced to 2.3 millimeters with known object models. In addition, we observed that, under heavy visual occlusion, we could achieve improvements in tracking up to 94% compared with vision-only methods. Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation. We release our evaluation dataset of 70 experiments, FeelSight, as a step toward benchmarking in this domain. Our neural representation driven by multimodal sensing can serve as a perception backbone toward advancing robot dexterity.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adl0628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crucial hurdles to achieving human-robot harmony 实现人与机器人和谐相处的关键障碍。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-13 DOI: 10.1126/scirobotics.adp2507
Keya Ghonasgi, Taylor Higgins, Meghan E. Huber, Marcia K. O’Malley
Holistic consideration of the human and the robot is necessary to overcome hurdles in human-robot interaction.
要克服人机交互中的障碍,就必须全面考虑人和机器人。
{"title":"Crucial hurdles to achieving human-robot harmony","authors":"Keya Ghonasgi,&nbsp;Taylor Higgins,&nbsp;Meghan E. Huber,&nbsp;Marcia K. O’Malley","doi":"10.1126/scirobotics.adp2507","DOIUrl":"10.1126/scirobotics.adp2507","url":null,"abstract":"<div >Holistic consideration of the human and the robot is necessary to overcome hurdles in human-robot interaction.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How much initiative should a service robot have? 服务机器人应该有多少主动权?
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-13 DOI: 10.1126/scirobotics.adt8902
Robin R. Murphy
Adrian Tchaikovsky’s new novel Service Model humorously imagines a robot Jeeves coping with the end of civilization.
Adrian Tchaikovsky 的新作《服务模式》幽默地想象了一个机器人吉夫斯如何应对文明的终结。
{"title":"How much initiative should a service robot have?","authors":"Robin R. Murphy","doi":"10.1126/scirobotics.adt8902","DOIUrl":"10.1126/scirobotics.adt8902","url":null,"abstract":"<div >Adrian Tchaikovsky’s new novel <i>Service Model</i> humorously imagines a robot Jeeves coping with the end of civilization.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-organizing nervous systems for robot swarms 机器人群的自组织神经系统
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-11-13 DOI: 10.1126/scirobotics.adl5161
Weixu Zhu, Sinan Oğuz, Mary Katherine Heinrich, Michael Allwright, Mostafa Wahby, Anders Lyhne Christensen, Emanuele Garone, Marco Dorigo
We present the self-organizing nervous system (SoNS), a robot swarm architecture based on self-organized hierarchy. The SoNS approach enables robots to autonomously establish, maintain, and reconfigure dynamic multilevel system architectures. For example, a robot swarm consisting of n independent robots could transform into a single n–robot SoNS and then into several independent smaller SoNSs, where each SoNS uses a temporary and dynamic hierarchy. Leveraging the SoNS approach, we showed that sensing, actuation, and decision-making can be coordinated in a locally centralized way without sacrificing the benefits of scalability, flexibility, and fault tolerance, for which swarm robotics is usually studied. In several proof-of-concept robot missions—including binary decision-making and search and rescue—we demonstrated that the capabilities of the SoNS approach greatly advance the state of the art in swarm robotics. The missions were conducted with a real heterogeneous aerial-ground robot swarm, using a custom-developed quadrotor platform. We also demonstrated the scalability of the SoNS approach in swarms of up to 250 robots in a physics-based simulator and demonstrated several types of system fault tolerance in simulation and reality.
我们提出了自组织神经系统(SoNS),这是一种基于自组织层次结构的机器人群架构。SoNS 方法使机器人能够自主建立、维护和重新配置动态多级系统结构。例如,由 n 个独立机器人组成的机器人群可以转变为一个 n 个机器人的 SoNS,然后再转变为多个独立的小型 SoNS,其中每个 SoNS 都使用临时的动态层次结构。利用 SoNS 方法,我们证明了感知、执行和决策可以通过局部集中的方式进行协调,而不会牺牲可扩展性、灵活性和容错性等优点,而这些正是研究蜂群机器人技术的通常目的。在几个概念验证机器人任务(包括二进制决策和搜索救援)中,我们证明了 SoNS 方法的能力大大推进了蜂群机器人技术的发展。这些任务是利用一个定制开发的四旋翼平台,通过一个真实的异构空地机器人群来完成的。我们还在基于物理的模拟器中演示了 SoNS 方法在多达 250 个机器人群中的可扩展性,并在模拟和现实中演示了几种类型的系统容错。
{"title":"Self-organizing nervous systems for robot swarms","authors":"Weixu Zhu,&nbsp;Sinan Oğuz,&nbsp;Mary Katherine Heinrich,&nbsp;Michael Allwright,&nbsp;Mostafa Wahby,&nbsp;Anders Lyhne Christensen,&nbsp;Emanuele Garone,&nbsp;Marco Dorigo","doi":"10.1126/scirobotics.adl5161","DOIUrl":"10.1126/scirobotics.adl5161","url":null,"abstract":"<div >We present the self-organizing nervous system (SoNS), a robot swarm architecture based on self-organized hierarchy. The SoNS approach enables robots to autonomously establish, maintain, and reconfigure dynamic multilevel system architectures. For example, a robot swarm consisting of <i>n</i> independent robots could transform into a single <i>n</i>–robot SoNS and then into several independent smaller SoNSs, where each SoNS uses a temporary and dynamic hierarchy. Leveraging the SoNS approach, we showed that sensing, actuation, and decision-making can be coordinated in a locally centralized way without sacrificing the benefits of scalability, flexibility, and fault tolerance, for which swarm robotics is usually studied. In several proof-of-concept robot missions—including binary decision-making and search and rescue—we demonstrated that the capabilities of the SoNS approach greatly advance the state of the art in swarm robotics. The missions were conducted with a real heterogeneous aerial-ground robot swarm, using a custom-developed quadrotor platform. We also demonstrated the scalability of the SoNS approach in swarms of up to 250 robots in a physics-based simulator and demonstrated several types of system fault tolerance in simulation and reality.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adl5161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing scientific discovery with the aid of robotics. 借助机器人技术推动科学发现。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adt3842
Amos Matsiko

Robots can be powerful tools to advance basic scientific discovery.

机器人可以成为推动基础科学发现的强大工具。
{"title":"Advancing scientific discovery with the aid of robotics.","authors":"Amos Matsiko","doi":"10.1126/scirobotics.adt3842","DOIUrl":"https://doi.org/10.1126/scirobotics.adt3842","url":null,"abstract":"<p><p>Robots can be powerful tools to advance basic scientific discovery.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadt3842"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning-based framework for whale rendezvous via autonomous sensing robots. 基于强化学习的自主感知机器人鲸鱼会合框架。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adn7299
Ninad Jadhav, Sushmita Bhattacharya, Daniel Vogt, Yaniv Aluma, Pernille Tonessen, Akarsh Prabhakara, Swarun Kumar, Shane Gero, Robert J Wood, Stephanie Gil

Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an "engineered whale"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.

与抹香鲸会合进行生物观测因其长时间的潜水模式而具有挑战性。在此,我们提出了一个算法框架,该框架开发了基于多代理强化学习的路由选择(自主模块)和基于合成孔径雷达甚高频(VHF)信号的方位估计(传感模块),以最大限度地提高自主机器人与抹香鲸会合的机会。传感模块与常用于追踪野生动物的低能耗甚高频标签兼容。自主模块利用对鲸鱼发声、甚高频标签和鲸鱼潜水行为的现场噪声方位测量,在模拟中实现机器人团队与多头鲸鱼的时间关键性会合。我们在抹香鲸的原生栖息地进行了海上实验,使用了 "工程鲸"--一艘装有甚高频发射标签的快艇,模拟了五种不同的鲸鱼运动轨迹。传感模块与标签的中位方位误差为 10.55°。利用声学传感器和传感模块对工程鲸的方位测量,我们的自主模块在后处理中使用三个机器人在 500 米交会距离内的总交会成功率为 81.31%。第二类实地实验使用声学方位测量法测量了三头未标记抹香鲸的方位,结果显示,使用两个机器人进行后处理,在 1000 米交会距离上的总交会成功率为 68.68%。我们还利用海洋生物学家收集的抹香鲸目视相遇数据集进行了多项消融研究,进一步验证了这些算法。
{"title":"Reinforcement learning-based framework for whale rendezvous via autonomous sensing robots.","authors":"Ninad Jadhav, Sushmita Bhattacharya, Daniel Vogt, Yaniv Aluma, Pernille Tonessen, Akarsh Prabhakara, Swarun Kumar, Shane Gero, Robert J Wood, Stephanie Gil","doi":"10.1126/scirobotics.adn7299","DOIUrl":"https://doi.org/10.1126/scirobotics.adn7299","url":null,"abstract":"<p><p>Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an \"engineered whale\"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadn7299"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the sense of self through robotics. 通过机器人了解自我意识。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adn2733
Tony J Prescott, Kai Vogeley, Agnieszka Wykowska

Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models.

机器人技术可以在科学理解自我意识方面发挥有益的作用,既可以通过构建自我的具身模型,也可以通过使用机器人作为探索人类自我的实验探针。在这两种情况下,机器人的化身都能让我们设计和测试有关自我本质的假设,包括自我的发展、自我在行为中的表现,以及人类、动物和潜在机器中自我的多样性。本文回顾了涉及自我主题的机器人研究--最小自我、扩展自我和自我失调,并强调了通过在人工系统中构建自我的组成部分来理解自我的未来方向和挑战。一种新出现的观点认为,通过适当配置传感器和执行器系统以及涉及预测模型网络的分层认知架构,可以在机器人中生成自我的关键现象。
{"title":"Understanding the sense of self through robotics.","authors":"Tony J Prescott, Kai Vogeley, Agnieszka Wykowska","doi":"10.1126/scirobotics.adn2733","DOIUrl":"https://doi.org/10.1126/scirobotics.adn2733","url":null,"abstract":"<p><p>Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models.</p>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":"eadn2733"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmented dexterity: How robots can enhance human surgical skills 增强灵巧性:机器人如何提高人类的外科手术技能。
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2024-10-30 DOI: 10.1126/scirobotics.adr5247
Ken Goldberg, Gary Guthart
Advances in AI and robotics have the potential to enhance the dexterity of human surgeons.
人工智能和机器人技术的进步有可能提高人类外科医生的灵巧性。
{"title":"Augmented dexterity: How robots can enhance human surgical skills","authors":"Ken Goldberg,&nbsp;Gary Guthart","doi":"10.1126/scirobotics.adr5247","DOIUrl":"10.1126/scirobotics.adr5247","url":null,"abstract":"<div >Advances in AI and robotics have the potential to enhance the dexterity of human surgeons.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 95","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1