首页 > 最新文献

Science Robotics最新文献

英文 中文
Magnetically actuated dexterous tools for minimally invasive operation inside the brain
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-26 DOI: 10.1126/scirobotics.adk4249
Changyan He, Robert Nguyen, Haley Mayer, Lingbo Cheng, Paul Kang, D. Anastasia Aubeeluck, Grace Thiong’ᴏ, Erik Fredin, James Drake, Thomas Looi, Eric Diller
Operating in the brain for deep-seated tumors or surgical targets for epilepsy is technically demanding and normally requires a large craniotomy with its attendant risk and morbidity. Neuroendoscopic surgery has the potential to reduce risk and morbidity by permitting surgical access through a small incision with burr hole and a narrow corridor through the brain. However, current endoscopic neurosurgical tools are straight and rigid and lack dexterity, hindering their adoption for neuroendoscopic procedures. We propose a class of robotic neurosurgical tools that have magnetically actuated wristed end effectors small enough to fit through a neuroendoscope working channel. The tools were less than 3.2 millimeters in overall diameter and contained embedded permanent magnets that allowed wireless actuation with magnetic fields. Three magnetic tools are presented: a two–degrees-of-freedom (DoFs) wristed gripper, a one-DoF pivoting scalpel, and a one-DoF twisted string–actuated forceps. This work evaluated the feasibility of these tools for completing minimally invasive neurosurgical resection and cutting tasks. Experimental tests on a silicone brain phantom showed that the tools could reach the ventricle area for simulated tumor removal and access a section of the corpus callosotomy for a simulated tissue-severing procedure in epilepsy treatment. Integration of the magnetic end effectors with a concentric tube robot as a hybrid steerable surgical robotic system enabled in vivo experiments on piglets. These experiments show that wireless magnetic tools could perform essential neurosurgical tasks, including gripping, cutting, and biopsy on living brain tissue, suggesting their potential for clinical applications.
{"title":"Magnetically actuated dexterous tools for minimally invasive operation inside the brain","authors":"Changyan He,&nbsp;Robert Nguyen,&nbsp;Haley Mayer,&nbsp;Lingbo Cheng,&nbsp;Paul Kang,&nbsp;D. Anastasia Aubeeluck,&nbsp;Grace Thiong’ᴏ,&nbsp;Erik Fredin,&nbsp;James Drake,&nbsp;Thomas Looi,&nbsp;Eric Diller","doi":"10.1126/scirobotics.adk4249","DOIUrl":"10.1126/scirobotics.adk4249","url":null,"abstract":"<div >Operating in the brain for deep-seated tumors or surgical targets for epilepsy is technically demanding and normally requires a large craniotomy with its attendant risk and morbidity. Neuroendoscopic surgery has the potential to reduce risk and morbidity by permitting surgical access through a small incision with burr hole and a narrow corridor through the brain. However, current endoscopic neurosurgical tools are straight and rigid and lack dexterity, hindering their adoption for neuroendoscopic procedures. We propose a class of robotic neurosurgical tools that have magnetically actuated wristed end effectors small enough to fit through a neuroendoscope working channel. The tools were less than 3.2 millimeters in overall diameter and contained embedded permanent magnets that allowed wireless actuation with magnetic fields. Three magnetic tools are presented: a two–degrees-of-freedom (DoFs) wristed gripper, a one-DoF pivoting scalpel, and a one-DoF twisted string–actuated forceps. This work evaluated the feasibility of these tools for completing minimally invasive neurosurgical resection and cutting tasks. Experimental tests on a silicone brain phantom showed that the tools could reach the ventricle area for simulated tumor removal and access a section of the corpus callosotomy for a simulated tissue-severing procedure in epilepsy treatment. Integration of the magnetic end effectors with a concentric tube robot as a hybrid steerable surgical robotic system enabled in vivo experiments on piglets. These experiments show that wireless magnetic tools could perform essential neurosurgical tasks, including gripping, cutting, and biopsy on living brain tissue, suggesting their potential for clinical applications.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143703304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum for the Research Article “Safety-assured high-speed navigation for MAVs” by Y. Ren et al.
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-26 DOI: 10.1126/scirobotics.adx3476
{"title":"Erratum for the Research Article “Safety-assured high-speed navigation for MAVs” by Y. Ren et al.","authors":"","doi":"10.1126/scirobotics.adx3476","DOIUrl":"10.1126/scirobotics.adx3476","url":null,"abstract":"","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing emotion and intonation in speech to improve robot acceptance
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-26 DOI: 10.1126/scirobotics.adx2364
Amos Matsiko
The use of emotional words and expressive voices in robots alters the attribution of agency and experience by humans.
{"title":"Harnessing emotion and intonation in speech to improve robot acceptance","authors":"Amos Matsiko","doi":"10.1126/scirobotics.adx2364","DOIUrl":"10.1126/scirobotics.adx2364","url":null,"abstract":"<div >The use of emotional words and expressive voices in robots alters the attribution of agency and experience by humans.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous robotic organizations for marine operations 用于海上作业的自主机器人组织
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-26 DOI: 10.1126/scirobotics.adl2976
Kjetil Skaugset, João Borges de Sousa, Asgeir J. Sørensen
Future marine operations objectives and tasks require a paradigm shift from robots to autonomous robotic organizations (AROs). These AROs must have advanced cooperative skills, control capabilities, and resilience both as individuals and as heterogeneous robot teams operating in space and air, on the sea surface, and underwater.
未来海洋行动的目标和任务要求从机器人向自主机器人组织(AROs)的模式转变。这些自动机器人组织必须具备先进的合作技能、控制能力和应变能力,无论是作为个体还是作为在太空、空中、海面和水下作业的异质机器人团队。
{"title":"Autonomous robotic organizations for marine operations","authors":"Kjetil Skaugset,&nbsp;João Borges de Sousa,&nbsp;Asgeir J. Sørensen","doi":"10.1126/scirobotics.adl2976","DOIUrl":"10.1126/scirobotics.adl2976","url":null,"abstract":"<div >Future marine operations objectives and tasks require a paradigm shift from robots to autonomous robotic organizations (AROs). These AROs must have advanced cooperative skills, control capabilities, and resilience both as individuals and as heterogeneous robot teams operating in space and air, on the sea surface, and underwater.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143703253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the oloid shape in magnetically driven robots to enable high-resolution ultrasound imaging
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-26 DOI: 10.1126/scirobotics.adq4198
Nikita J. Greenidge, Benjamin Calmé, Alexandru C. Moldovan, Bartas Abaravicius, James W. Martin, Nils Marahrens, Jon Woolfrey, Bruno Scaglioni, Damith S. Chathuranga, Srinjoy Mitra, Sandy Cochran, Pietro Valdastri
Magnetic fields enable remote manipulation of objects and are ideal for medical applications because they pass through human tissue harmlessly. This capability is promising for surgical robots, allowing navigation deeper into the human anatomy and accessing organs beyond the reach of current technologies. However, magnetic manipulation is typically limited to a maximum two–degrees-of-freedom orientation, restricting complex motions, especially those including rolling around the main axis of the magnetic robot. To address this challenge, we introduce a robot design inspired by embodied intelligence and the unique geometry of developable rollers, leveraging the oloid shape. The oloid, with its axial asymmetry and sinusoidal motion, facilitates rolling when precisely controlled by an external magnetic field. We present a versatile closed-loop control model to ensure precise magnetic manipulation of an oloid-shaped robot. This capability was validated in endoluminal applications through the integration of a 28-megahertz micro-ultrasound array to perform virtual biopsies, noninvasive real-time histological imaging. Extensive in vitro and in vivo tests using a porcine model showed the robot’s ability to execute sweeping motions, identify lesions, and generate detailed three-dimensional scans of gastrointestinal subsurface tissue. This research not only restores a critical movement capability to magnetic medical robots but also enables additional clinical applications deep within the human body.
{"title":"Harnessing the oloid shape in magnetically driven robots to enable high-resolution ultrasound imaging","authors":"Nikita J. Greenidge,&nbsp;Benjamin Calmé,&nbsp;Alexandru C. Moldovan,&nbsp;Bartas Abaravicius,&nbsp;James W. Martin,&nbsp;Nils Marahrens,&nbsp;Jon Woolfrey,&nbsp;Bruno Scaglioni,&nbsp;Damith S. Chathuranga,&nbsp;Srinjoy Mitra,&nbsp;Sandy Cochran,&nbsp;Pietro Valdastri","doi":"10.1126/scirobotics.adq4198","DOIUrl":"10.1126/scirobotics.adq4198","url":null,"abstract":"<div >Magnetic fields enable remote manipulation of objects and are ideal for medical applications because they pass through human tissue harmlessly. This capability is promising for surgical robots, allowing navigation deeper into the human anatomy and accessing organs beyond the reach of current technologies. However, magnetic manipulation is typically limited to a maximum two–degrees-of-freedom orientation, restricting complex motions, especially those including rolling around the main axis of the magnetic robot. To address this challenge, we introduce a robot design inspired by embodied intelligence and the unique geometry of developable rollers, leveraging the oloid shape. The oloid, with its axial asymmetry and sinusoidal motion, facilitates rolling when precisely controlled by an external magnetic field. We present a versatile closed-loop control model to ensure precise magnetic manipulation of an oloid-shaped robot. This capability was validated in endoluminal applications through the integration of a 28-megahertz micro-ultrasound array to perform virtual biopsies, noninvasive real-time histological imaging. Extensive in vitro and in vivo tests using a porcine model showed the robot’s ability to execute sweeping motions, identify lesions, and generate detailed three-dimensional scans of gastrointestinal subsurface tissue. This research not only restores a critical movement capability to magnetic medical robots but also enables additional clinical applications deep within the human body.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143703251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monopedal robot branch-to-branch leaping and landing inspired by squirrel balance control
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-19 DOI: 10.1126/scirobotics.adq1949
Justin K. Yim, Eric K. Wang, Sebastian D. Lee, Nathaniel H. Hunt, Robert J. Full, Ronald S. Fearing
Locomotors traversing arboreal environments must often leap across large gaps to land on small-diameter supports. Balancing these dynamic landings is challenging because of high incident momentum, restricted foothold options, and reduced capacity to produce reaction torques on narrow supports. We hypothesized that leg length control to enhance branch reaction control authority would markedly expand the range of successful landing conditions, drawing on the same powerful leg actuation required for leaping. Exploring this balance strategy, the monopedal robot Salto-1P demonstrates branch-to-branch leaps, including some upright balanced landings, despite negligible grasping torque. We also compared this landing strategy with the landings of squirrels, which similarly lack the grip strength found in other arboreal species. We demonstrate that greater radial force control reduces the inertial body torque and/or grasping torque at the support required to balance a given landing. Adding simple radial force balance control strategies to conventional balance controllers greatly expands potential landing conditions, increasing the range of initial angular momentum that can be balanced by 230 and 470% across ranges of landing angles for low-order models of the robot and squirrel, respectively.
{"title":"Monopedal robot branch-to-branch leaping and landing inspired by squirrel balance control","authors":"Justin K. Yim,&nbsp;Eric K. Wang,&nbsp;Sebastian D. Lee,&nbsp;Nathaniel H. Hunt,&nbsp;Robert J. Full,&nbsp;Ronald S. Fearing","doi":"10.1126/scirobotics.adq1949","DOIUrl":"10.1126/scirobotics.adq1949","url":null,"abstract":"<div >Locomotors traversing arboreal environments must often leap across large gaps to land on small-diameter supports. Balancing these dynamic landings is challenging because of high incident momentum, restricted foothold options, and reduced capacity to produce reaction torques on narrow supports. We hypothesized that leg length control to enhance branch reaction control authority would markedly expand the range of successful landing conditions, drawing on the same powerful leg actuation required for leaping. Exploring this balance strategy, the monopedal robot Salto-1P demonstrates branch-to-branch leaps, including some upright balanced landings, despite negligible grasping torque. We also compared this landing strategy with the landings of squirrels, which similarly lack the grip strength found in other arboreal species. We demonstrate that greater radial force control reduces the inertial body torque and/or grasping torque at the support required to balance a given landing. Adding simple radial force balance control strategies to conventional balance controllers greatly expands potential landing conditions, increasing the range of initial angular momentum that can be balanced by 230 and 470% across ranges of landing angles for low-order models of the robot and squirrel, respectively.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniature deep-sea morphable robot with multimodal locomotion
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-19 DOI: 10.1126/scirobotics.adp7821
Fei Pan, Jiaqi Liu, Zonghao Zuo, Xia He, Zhuyin Shao, Junyu Chen, Haoxuan Wang, Qiyi Zhang, Feiyang Yuan, Bohan Chen, Tongtong Jin, Liwen He, Yun Wang, Kangle Zhang, Xilun Ding, Tiefeng Li, Li Wen
Research on miniature deep-sea robots is an emerging field focused on the development of deployable, compact devices capable of interacting with the unique environments and organisms of the deep ocean. In this study, we present a design strategy for a centimeter-scale deep-sea soft actuator, weighing 16 grams, that incorporates bistable chiral metamaterials and tube-sealed shape memory alloys. According to our design, the increased modulus induced by the hydrostatic pressure was used to achieve a higher snapping velocity of the bistable chiral unit, thus lifting the actuator’s performance. We showed that the actuator can produce undistorted cyclic motions at various depths in the deep sea. Subsequently, we developed an untethered miniature deep-sea robot that is capable of multimodal locomotion by repurposing its legs and fins. To validate the robot’s performance, this miniature robot was deployed from deep-sea crewed submersibles, performing swimming, gliding, morphing, and crawling in the Haima Cold Seep (1380-meter depth) and the Mariana Trench (10,600-meter depth); it was then retrieved by the submersible fully intact. The actuation module design enabled the robot to perform comparably in the Haima Cold Seep and laboratory aquarium conditions (atmospheric pressure). Additionally, we developed a wearable soft gripper based on the same metamaterial design strategy to facilitate safe deep-sea operations, ranging from soft-specimen collection to heavy-object manipulation (~3400-meter depth). This study offers design insights into creating next-generation miniature deep-sea actuators and robots, paving the way for future exploration and interaction with deep-sea ecosystems.
{"title":"Miniature deep-sea morphable robot with multimodal locomotion","authors":"Fei Pan,&nbsp;Jiaqi Liu,&nbsp;Zonghao Zuo,&nbsp;Xia He,&nbsp;Zhuyin Shao,&nbsp;Junyu Chen,&nbsp;Haoxuan Wang,&nbsp;Qiyi Zhang,&nbsp;Feiyang Yuan,&nbsp;Bohan Chen,&nbsp;Tongtong Jin,&nbsp;Liwen He,&nbsp;Yun Wang,&nbsp;Kangle Zhang,&nbsp;Xilun Ding,&nbsp;Tiefeng Li,&nbsp;Li Wen","doi":"10.1126/scirobotics.adp7821","DOIUrl":"10.1126/scirobotics.adp7821","url":null,"abstract":"<div >Research on miniature deep-sea robots is an emerging field focused on the development of deployable, compact devices capable of interacting with the unique environments and organisms of the deep ocean. In this study, we present a design strategy for a centimeter-scale deep-sea soft actuator, weighing 16 grams, that incorporates bistable chiral metamaterials and tube-sealed shape memory alloys. According to our design, the increased modulus induced by the hydrostatic pressure was used to achieve a higher snapping velocity of the bistable chiral unit, thus lifting the actuator’s performance. We showed that the actuator can produce undistorted cyclic motions at various depths in the deep sea. Subsequently, we developed an untethered miniature deep-sea robot that is capable of multimodal locomotion by repurposing its legs and fins. To validate the robot’s performance, this miniature robot was deployed from deep-sea crewed submersibles, performing swimming, gliding, morphing, and crawling in the Haima Cold Seep (1380-meter depth) and the Mariana Trench (10,600-meter depth); it was then retrieved by the submersible fully intact. The actuation module design enabled the robot to perform comparably in the Haima Cold Seep and laboratory aquarium conditions (atmospheric pressure). Additionally, we developed a wearable soft gripper based on the same metamaterial design strategy to facilitate safe deep-sea operations, ranging from soft-specimen collection to heavy-object manipulation (~3400-meter depth). This study offers design insights into creating next-generation miniature deep-sea actuators and robots, paving the way for future exploration and interaction with deep-sea ecosystems.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging hard and soft: Mechanical metamaterials enable rigid torque transmission in soft robots
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-19 DOI: 10.1126/scirobotics.ads0548
Molly Carton, Jakub F. Kowalewski, Jiani Guo, Jacob F. Alpert, Aman Garg, Daniel Revier, Jeffrey Ian Lipton
Torque and continuous rotation are fundamental methods of actuation and manipulation in rigid robots. Soft robot arms use soft materials and structures to mimic the passive compliance of biological arms that bend and extend. This use of compliance prevents soft arms from continuously transmitting and exerting torques to interact with their environment. Here, we show how relying on patterning structures instead of inherent material properties allows soft robotic arms to remain compliant while continuously transmitting torque to their environment. We demonstrate a soft robotic arm made from a pair of mechanical metamaterials that act as compliant constant-velocity joints. The joints are up to 52 times stiffer in torsion than bending and can bend up to 45°. This robot arm continuously transmits torque while remaining flexible in all other directions. The arm’s mechanical design achieves high motion repeatability (0.4 millimeters and 0.1°) when tracking trajectories. We then trained a neural network to learn the inverse kinematics, enabling us to program the arm to complete tasks that are challenging for existing soft robots, such as installing light bulbs, fastening bolts, and turning valves. The arm’s passive compliance makes it safe around humans and provides a source of mechanical intelligence, enabling it to adapt to misalignment when manipulating objects. This work will bridge the gap between hard and soft robotics with applications in human assistance, warehouse automation, and extreme environments.
{"title":"Bridging hard and soft: Mechanical metamaterials enable rigid torque transmission in soft robots","authors":"Molly Carton,&nbsp;Jakub F. Kowalewski,&nbsp;Jiani Guo,&nbsp;Jacob F. Alpert,&nbsp;Aman Garg,&nbsp;Daniel Revier,&nbsp;Jeffrey Ian Lipton","doi":"10.1126/scirobotics.ads0548","DOIUrl":"10.1126/scirobotics.ads0548","url":null,"abstract":"<div >Torque and continuous rotation are fundamental methods of actuation and manipulation in rigid robots. Soft robot arms use soft materials and structures to mimic the passive compliance of biological arms that bend and extend. This use of compliance prevents soft arms from continuously transmitting and exerting torques to interact with their environment. Here, we show how relying on patterning structures instead of inherent material properties allows soft robotic arms to remain compliant while continuously transmitting torque to their environment. We demonstrate a soft robotic arm made from a pair of mechanical metamaterials that act as compliant constant-velocity joints. The joints are up to 52 times stiffer in torsion than bending and can bend up to 45°. This robot arm continuously transmits torque while remaining flexible in all other directions. The arm’s mechanical design achieves high motion repeatability (0.4 millimeters and 0.1°) when tracking trajectories. We then trained a neural network to learn the inverse kinematics, enabling us to program the arm to complete tasks that are challenging for existing soft robots, such as installing light bulbs, fastening bolts, and turning valves. The arm’s passive compliance makes it safe around humans and provides a source of mechanical intelligence, enabling it to adapt to misalignment when manipulating objects. This work will bridge the gap between hard and soft robotics with applications in human assistance, warehouse automation, and extreme environments.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Worm-like robot with integrated modular power
IF 26.1 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-19 DOI: 10.1126/scirobotics.adw9921
Melisa Yashinski
An untethered crawling robot is self-powered by embedding a deformable battery cell within each actuation module.
{"title":"Worm-like robot with integrated modular power","authors":"Melisa Yashinski","doi":"10.1126/scirobotics.adw9921","DOIUrl":"10.1126/scirobotics.adw9921","url":null,"abstract":"<div >An untethered crawling robot is self-powered by embedding a deformable battery cell within each actuation module.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 100","pages":""},"PeriodicalIF":26.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept
IF 25 1区 计算机科学 Q1 ROBOTICS Pub Date : 2025-03-12 DOI: 10.1126/scirobotics.adn5564
Nicolas Hankov, Miroslav Caban, Robin Demesmaeker, Margaux Roulet, Salif Komi, Michele Xiloyannis, Anne Gehrig, Camille Varescon, Martina Rebeka Spiess, Serena Maggioni, Chiara Basla, Gleb Koginov, Florian Haufe, Marina D’Ercole, Cathal Harte, Sergio D. Hernandez-Charpak, Aurelie Paley, Manon Tschopp, Natacha Herrmann, Nadine Intering, Edeny Baaklini, Francesco Acquati, Charlotte Jacquet, Anne Watrin, Jimmy Ravier, Frédéric Merlos, Grégoire Eberlé, Katrien Van den Keybus, Hendrik Lambert, Henri Lorach, Rik Buschman, Nicholas Buse, Timothy Denison, Dino De Bon, Jaime E. Duarte, Robert Riener, Auke Ijspeert, Fabien Wagner, Sebastian Tobler, Léonie Asboth, Joachim von Zitzewitz, Jocelyne Bloch, Grégoire Courtine
Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.
{"title":"Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept","authors":"Nicolas Hankov, Miroslav Caban, Robin Demesmaeker, Margaux Roulet, Salif Komi, Michele Xiloyannis, Anne Gehrig, Camille Varescon, Martina Rebeka Spiess, Serena Maggioni, Chiara Basla, Gleb Koginov, Florian Haufe, Marina D’Ercole, Cathal Harte, Sergio D. Hernandez-Charpak, Aurelie Paley, Manon Tschopp, Natacha Herrmann, Nadine Intering, Edeny Baaklini, Francesco Acquati, Charlotte Jacquet, Anne Watrin, Jimmy Ravier, Frédéric Merlos, Grégoire Eberlé, Katrien Van den Keybus, Hendrik Lambert, Henri Lorach, Rik Buschman, Nicholas Buse, Timothy Denison, Dino De Bon, Jaime E. Duarte, Robert Riener, Auke Ijspeert, Fabien Wagner, Sebastian Tobler, Léonie Asboth, Joachim von Zitzewitz, Jocelyne Bloch, Grégoire Courtine","doi":"10.1126/scirobotics.adn5564","DOIUrl":"https://doi.org/10.1126/scirobotics.adn5564","url":null,"abstract":"Rehabilitation robotics aims to promote activity-dependent reorganization of the nervous system. However, people with paralysis cannot generate sufficient activity during robot-assisted rehabilitation and, consequently, do not benefit from these therapies. Here, we developed an implantable spinal cord neuroprosthesis operating in a closed loop to promote robust activity during walking and cycling assisted by robotic devices. This neuroprosthesis is device agnostic and designed for seamless implementation by nonexpert users. Preliminary evaluations in participants with paralysis showed that the neuroprosthesis enabled well-organized patterns of muscle activity during robot-assisted walking and cycling. A proof-of-concept study suggested that robot-assisted rehabilitation augmented by the neuroprosthesis promoted sustained neurological improvements. Moreover, the neuroprosthesis augmented recreational walking and cycling activities outdoors. Future clinical trials will have to confirm these findings in a broader population.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"7 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143599170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1