Video-based Soft Tissue Deformation Tracking for Laparoscopic Augmented Reality-based Navigation in Kidney Surgery.

Enpeng Wang, Yueang Liu, Puxun Tu, Zeike A Taylor, Xiaojun Chen
{"title":"Video-based Soft Tissue Deformation Tracking for Laparoscopic Augmented Reality-based Navigation in Kidney Surgery.","authors":"Enpeng Wang, Yueang Liu, Puxun Tu, Zeike A Taylor, Xiaojun Chen","doi":"10.1109/TMI.2024.3413537","DOIUrl":null,"url":null,"abstract":"<p><p>Minimally invasive surgery (MIS) remains technically demanding due to the difficulty of tracking hidden critical structures within the moving anatomy of the patient. In this study, we propose a soft tissue deformation tracking augmented reality (AR) navigation pipeline for laparoscopic surgery of the kidneys. The proposed navigation pipeline addresses two main sub-problems: the initial registration and deformation tracking. Our method utilizes preoperative MR or CT data and binocular laparoscopes without any additional interventional hardware. The initial registration is resolved through a probabilistic rigid registration algorithm and elastic compensation based on dense point cloud reconstruction. For deformation tracking, the sparse feature point displacement vector field continuously provides temporal boundary conditions for the biomechanical model. To enhance the accuracy of the displacement vector field, a novel feature points selection strategy based on deep learning is proposed. Moreover, an ex-vivo experimental method for internal structures error assessment is presented. The ex-vivo experiments indicate an external surface reprojection error of 4.07 ± 2.17mm and a maximum mean absolutely error for internal structures of 2.98mm. In-vivo experiments indicate mean absolutely error of 3.28 ± 0.40mm and 1.90±0.24mm, respectively. The combined qualitative and quantitative findings indicated the potential of our AR-assisted navigation system in improving the clinical application of laparoscopic kidney surgery.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3413537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Minimally invasive surgery (MIS) remains technically demanding due to the difficulty of tracking hidden critical structures within the moving anatomy of the patient. In this study, we propose a soft tissue deformation tracking augmented reality (AR) navigation pipeline for laparoscopic surgery of the kidneys. The proposed navigation pipeline addresses two main sub-problems: the initial registration and deformation tracking. Our method utilizes preoperative MR or CT data and binocular laparoscopes without any additional interventional hardware. The initial registration is resolved through a probabilistic rigid registration algorithm and elastic compensation based on dense point cloud reconstruction. For deformation tracking, the sparse feature point displacement vector field continuously provides temporal boundary conditions for the biomechanical model. To enhance the accuracy of the displacement vector field, a novel feature points selection strategy based on deep learning is proposed. Moreover, an ex-vivo experimental method for internal structures error assessment is presented. The ex-vivo experiments indicate an external surface reprojection error of 4.07 ± 2.17mm and a maximum mean absolutely error for internal structures of 2.98mm. In-vivo experiments indicate mean absolutely error of 3.28 ± 0.40mm and 1.90±0.24mm, respectively. The combined qualitative and quantitative findings indicated the potential of our AR-assisted navigation system in improving the clinical application of laparoscopic kidney surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视频的软组织变形追踪技术用于肾脏手术中的腹腔镜增强现实导航。
微创手术(MIS)对技术的要求仍然很高,因为很难跟踪病人移动解剖结构中隐藏的关键结构。在这项研究中,我们提出了一种用于肾脏腹腔镜手术的软组织形变跟踪增强现实(AR)导航管道。所提出的导航管道主要解决两个子问题:初始注册和形变跟踪。我们的方法利用术前 MR 或 CT 数据和双目腹腔镜,无需任何额外的介入硬件。初始配准通过概率刚性配准算法和基于密集点云重建的弹性补偿来解决。在形变跟踪方面,稀疏特征点位移矢量场不断为生物力学模型提供时间边界条件。为了提高位移矢量场的精度,提出了一种基于深度学习的新型特征点选择策略。此外,还提出了一种用于评估内部结构误差的体外实验方法。体外实验表明,外表面重投影误差为 4.07 ± 2.17 毫米,内部结构的最大平均绝对误差为 2.98 毫米。体内实验显示平均绝对误差分别为 3.28 ± 0.40 毫米和 1.90 ± 0.24 毫米。综合定性和定量研究结果表明,我们的 AR 辅助导航系统在改善腹腔镜肾脏手术的临床应用方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis. Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction estimated navigator. Low-dose CT image super-resolution with noise suppression based on prior degradation estimator and self-guidance mechanism. Table of Contents LOQUAT: Low-Rank Quaternion Reconstruction for Photon-Counting CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1