{"title":"Optimizing large porous mannitol-leucine microparticles via spray drying technique","authors":"Karnkamol Trisopon, Ornanong Suwannapakul Kittipongpatana, Phennapha Saokham","doi":"10.1016/j.apt.2024.104512","DOIUrl":null,"url":null,"abstract":"<div><p>The development of large porous microparticles (LPPs) has gained attention for dry powder in-halation (DPI) formulations due to their potential to enhance the efficiency of drug delivery into the lungs. In this work, large porous mannitol-leucine microparticles (MALs) were developed using a spray drying technique. Mannitol was co-spray dried with ammonium bicarbonate (0–50 % w/w) and leucine (1–20 % w/w). The morphology of MAL particles was spherical hollow with corrugated surface. The MAL with 10 % leucine (MAL-10) showed the lowest bulk density (0.08 g/cm<sup>3</sup>) with the highest surface area (7.85 m<sup>2</sup>/g), while the aerodynamic diameter (D<sub>aer</sub>) was within 1–5 μm, indicating the suitability to penetrate the lung. The DSC and XRD results indicated that the MALs exhibited a mixture of β- and α-polymorphs, while the FT-IR spectra con-firmed that no chemical interaction during co-processing. The leucine co-processing significantly improved powder flowability of the MAL-10 (28.33° for angle of repose). In addition, the co-processing with high leucine concentration (10–20 %) significantly reduced moisture sorption, while the polymorph of MALs did not change after 30 days of hygroscopicity study that indicated good stability. According to all results, the MALs could potentially be applied as drug carriers for DPI formulations.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124001882","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of large porous microparticles (LPPs) has gained attention for dry powder in-halation (DPI) formulations due to their potential to enhance the efficiency of drug delivery into the lungs. In this work, large porous mannitol-leucine microparticles (MALs) were developed using a spray drying technique. Mannitol was co-spray dried with ammonium bicarbonate (0–50 % w/w) and leucine (1–20 % w/w). The morphology of MAL particles was spherical hollow with corrugated surface. The MAL with 10 % leucine (MAL-10) showed the lowest bulk density (0.08 g/cm3) with the highest surface area (7.85 m2/g), while the aerodynamic diameter (Daer) was within 1–5 μm, indicating the suitability to penetrate the lung. The DSC and XRD results indicated that the MALs exhibited a mixture of β- and α-polymorphs, while the FT-IR spectra con-firmed that no chemical interaction during co-processing. The leucine co-processing significantly improved powder flowability of the MAL-10 (28.33° for angle of repose). In addition, the co-processing with high leucine concentration (10–20 %) significantly reduced moisture sorption, while the polymorph of MALs did not change after 30 days of hygroscopicity study that indicated good stability. According to all results, the MALs could potentially be applied as drug carriers for DPI formulations.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)