Lili Fan;Junhao Wang;Yuanmeng Chang;Yuke Li;Yutong Wang;Dongpu Cao
{"title":"4D mmWave Radar for Autonomous Driving Perception: A Comprehensive Survey","authors":"Lili Fan;Junhao Wang;Yuanmeng Chang;Yuke Li;Yutong Wang;Dongpu Cao","doi":"10.1109/TIV.2024.3380244","DOIUrl":null,"url":null,"abstract":"The rapid development of autonomous driving technology has driven continuous innovation in perception systems, with 4D millimeter-wave (mmWave) radar being one of the key sensing devices. Leveraging its all-weather operational characteristics and robust perception capabilities in challenging environments, 4D mmWave radar plays a crucial role in achieving highly automated driving. This review systematically summarizes the latest advancements and key applications of 4D mmWave radar in the field of autonomous driving. To begin with, we introduce the fundamental principles and technical features of 4D mmWave radar, delving into its comprehensive perception capabilities across distance, speed, angle, and time dimensions. Subsequently, we provide a detailed analysis of the performance advantages of 4D mmWave radar compared to other sensors in complex environments. We then discuss the latest developments in target detection and tracking using 4D mmWave radar, along with existing datasets in this domain. Finally, we explore the current technological challenges and future directions. This review offers researchers and engineers a comprehensive understanding of the cutting-edge technology and future development directions of 4D mmWave radar in the context of autonomous driving perception.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 4","pages":"4606-4620"},"PeriodicalIF":14.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10477463/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of autonomous driving technology has driven continuous innovation in perception systems, with 4D millimeter-wave (mmWave) radar being one of the key sensing devices. Leveraging its all-weather operational characteristics and robust perception capabilities in challenging environments, 4D mmWave radar plays a crucial role in achieving highly automated driving. This review systematically summarizes the latest advancements and key applications of 4D mmWave radar in the field of autonomous driving. To begin with, we introduce the fundamental principles and technical features of 4D mmWave radar, delving into its comprehensive perception capabilities across distance, speed, angle, and time dimensions. Subsequently, we provide a detailed analysis of the performance advantages of 4D mmWave radar compared to other sensors in complex environments. We then discuss the latest developments in target detection and tracking using 4D mmWave radar, along with existing datasets in this domain. Finally, we explore the current technological challenges and future directions. This review offers researchers and engineers a comprehensive understanding of the cutting-edge technology and future development directions of 4D mmWave radar in the context of autonomous driving perception.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.