Laura Gasque-Belz, Bradley Park, Steven Siciliano, Natacha Hogan, Lynn Weber, Patrick Campbell, Rachel Peters, Mark Hanson, Markus Hecker
{"title":"Characterization of Adverse Outcomes from Legacy-Contaminated Groundwater Exposure to Early Life Stages of Fathead Minnow","authors":"Laura Gasque-Belz, Bradley Park, Steven Siciliano, Natacha Hogan, Lynn Weber, Patrick Campbell, Rachel Peters, Mark Hanson, Markus Hecker","doi":"10.1007/s00244-024-01069-7","DOIUrl":null,"url":null,"abstract":"<div><p>Complex mixtures of chemicals present in groundwater at legacy-contaminated industrial sites can pose significant risks to adjacent surface waters. The combination of short-term molecular and chronic apical effect assessments is a promising approach to characterize the potential hazard of such complex mixtures. The objectives of this study were to: (1) assess the apical effects (survival, growth, development, and liver histopathology) after chronic exposure of early life stages (ELSs) of fathead minnows (FHM; <i>Pimephales promelas</i>) to contaminated groundwater from a legacy-contaminated pesticide manufacturing and packaging plant, and (2) identify possible molecular mechanisms responsible for these effects by comparing results to mechanistic outcomes previously determined by a short-term reduced transcriptome assay (EcoToxChips). This study revealed a significant increase in mortality and prevalence of spinal curvatures, as well as a significant reduction in the length of FHMs exposed to the groundwater mixtures in a concentration-dependent manner. There was an increasing trend in the prevalence of edema in FHMs, though not significantly different from controls. Additionally, no histopathological effects were observed in the liver of FHMs exposed to the groundwater mixtures. Short-term molecular outcomes determined in a parallel study were found to be informative of chronic apical outcomes, including cardiotoxicity, spinal deformities, and liver toxicity. Overall, the results observed in this study demonstrated that short-term transcriptomics analyses could support the hazard assessment of complex contaminated sites.</p><h3>Graphical Abstract</h3><p>Molecular outcomes were reflective of mortality and deformities, but uncertainties remained in the prediction of hepatotoxic effects at apical level.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":"87 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00244-024-01069-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Complex mixtures of chemicals present in groundwater at legacy-contaminated industrial sites can pose significant risks to adjacent surface waters. The combination of short-term molecular and chronic apical effect assessments is a promising approach to characterize the potential hazard of such complex mixtures. The objectives of this study were to: (1) assess the apical effects (survival, growth, development, and liver histopathology) after chronic exposure of early life stages (ELSs) of fathead minnows (FHM; Pimephales promelas) to contaminated groundwater from a legacy-contaminated pesticide manufacturing and packaging plant, and (2) identify possible molecular mechanisms responsible for these effects by comparing results to mechanistic outcomes previously determined by a short-term reduced transcriptome assay (EcoToxChips). This study revealed a significant increase in mortality and prevalence of spinal curvatures, as well as a significant reduction in the length of FHMs exposed to the groundwater mixtures in a concentration-dependent manner. There was an increasing trend in the prevalence of edema in FHMs, though not significantly different from controls. Additionally, no histopathological effects were observed in the liver of FHMs exposed to the groundwater mixtures. Short-term molecular outcomes determined in a parallel study were found to be informative of chronic apical outcomes, including cardiotoxicity, spinal deformities, and liver toxicity. Overall, the results observed in this study demonstrated that short-term transcriptomics analyses could support the hazard assessment of complex contaminated sites.
Graphical Abstract
Molecular outcomes were reflective of mortality and deformities, but uncertainties remained in the prediction of hepatotoxic effects at apical level.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.