Compatibility of the Entomopathogenic Fungus Metarhizium anisopliae (Ascomycota: Hypocreales) and the Predatory Coccinellid Menochilus sexmaculatus (Col.: Coccinellidae) for Controlling Aphis gossypii (Hem.: Aphididae).
{"title":"Compatibility of the Entomopathogenic Fungus Metarhizium anisopliae (Ascomycota: Hypocreales) and the Predatory Coccinellid Menochilus sexmaculatus (Col.: Coccinellidae) for Controlling Aphis gossypii (Hem.: Aphididae).","authors":"Haniieh Atrchian, Kamran Mahdian, Hamzeh Izadi","doi":"10.1007/s13744-024-01163-4","DOIUrl":null,"url":null,"abstract":"<p><p>Metarhizium anisopliae (Ascomycota: Hypocreales) is an entomopathogenic fungus considered a key factor in developing integrated management of several insect pests on a variety of crops. The predatory coccinellid, Menochilus sexmaculatus (Col.: Coccinellidae), is also an important natural enemy that must be conserved for effective aphid control. Laboratory studies were conducted under controlled conditions to investigate the interaction between M. anisopliae isolate IRN. 1 and the coccinellid predator M. sexmaculatus in combating Aphis gossypii Glover (Hem.: Aphididae). The combined application of M. sexmaculatus and M. anisopliae led to significant reduction in aphid populations. The foraging behavior of M. sexmaculatus notably facilitated the dispersion of M. anisopliae conidia to uninfected plants, resulting 54 ± 1.3% decrease in aphid density after 10 days. In both choice and non-choice experiments, female adult M. sexmaculatus to fungus-infected aphids was offered as prey and avoided as a food source during all starvation periods. However, live and dead non-fungus-infected aphids were fed upon. The result revealed the compatibility between M. sexmaculatus and M. anisopliae, which may provide a sustainable strategy for the effective management of A. gossypii in a cropping system.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"907-916"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-024-01163-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metarhizium anisopliae (Ascomycota: Hypocreales) is an entomopathogenic fungus considered a key factor in developing integrated management of several insect pests on a variety of crops. The predatory coccinellid, Menochilus sexmaculatus (Col.: Coccinellidae), is also an important natural enemy that must be conserved for effective aphid control. Laboratory studies were conducted under controlled conditions to investigate the interaction between M. anisopliae isolate IRN. 1 and the coccinellid predator M. sexmaculatus in combating Aphis gossypii Glover (Hem.: Aphididae). The combined application of M. sexmaculatus and M. anisopliae led to significant reduction in aphid populations. The foraging behavior of M. sexmaculatus notably facilitated the dispersion of M. anisopliae conidia to uninfected plants, resulting 54 ± 1.3% decrease in aphid density after 10 days. In both choice and non-choice experiments, female adult M. sexmaculatus to fungus-infected aphids was offered as prey and avoided as a food source during all starvation periods. However, live and dead non-fungus-infected aphids were fed upon. The result revealed the compatibility between M. sexmaculatus and M. anisopliae, which may provide a sustainable strategy for the effective management of A. gossypii in a cropping system.
期刊介绍:
Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.