Comprehensive multi-omics analysis of breast cancer reveals distinct long-term prognostic subtypes.

IF 5.9 2区 医学 Q1 ONCOLOGY Oncogenesis Pub Date : 2024-06-13 DOI:10.1038/s41389-024-00521-6
Abhibhav Sharma, Julia Debik, Bjørn Naume, Hege Oma Ohnstad, Tone F Bathen, Guro F Giskeødegård
{"title":"Comprehensive multi-omics analysis of breast cancer reveals distinct long-term prognostic subtypes.","authors":"Abhibhav Sharma, Julia Debik, Bjørn Naume, Hege Oma Ohnstad, Tone F Bathen, Guro F Giskeødegård","doi":"10.1038/s41389-024-00521-6","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is a leading cause of cancer-related death worldwide. The diverse nature and heterogeneous biology of BC pose challenges for survival prediction, as patients with similar diagnoses often respond differently to treatment. Clinically relevant BC intrinsic subtypes have been established through gene expression profiling and are implemented in the clinic. While these intrinsic subtypes show a significant association with clinical outcomes, their long-term survival prediction beyond 5 years often deviates from expected clinical outcomes. This study aimed to identify naturally occurring long-term prognostic subgroups of BC based on an integrated multi-omics analysis. This study incorporates a clinical cohort of 335 untreated BC patients from the Oslo2 study with long-term follow-up (>12 years). Multi-Omics Factor Analysis (MOFA+) was employed to integrate transcriptomic, proteomic, and metabolomic data obtained from the tumor tissues. Our analysis revealed three prominent multi-omics clusters of BC patients with significantly different long-term prognoses (p = 0.005). The multi-omics clusters were validated in two independent large cohorts, METABRIC and TCGA. Importantly, a lack of prognostic association to long-term follow-up above 12 years in the previously established intrinsic subtypes was shown for these cohorts. Through a systems-biology approach, we identified varying enrichment levels of cell-cycle and immune-related pathways among the prognostic clusters. Integrated multi-omics analysis of BC revealed three distinct clusters with unique clinical and biological characteristics. Notably, these multi-omics clusters displayed robust associations with long-term survival, outperforming the established intrinsic subtypes.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-024-00521-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer (BC) is a leading cause of cancer-related death worldwide. The diverse nature and heterogeneous biology of BC pose challenges for survival prediction, as patients with similar diagnoses often respond differently to treatment. Clinically relevant BC intrinsic subtypes have been established through gene expression profiling and are implemented in the clinic. While these intrinsic subtypes show a significant association with clinical outcomes, their long-term survival prediction beyond 5 years often deviates from expected clinical outcomes. This study aimed to identify naturally occurring long-term prognostic subgroups of BC based on an integrated multi-omics analysis. This study incorporates a clinical cohort of 335 untreated BC patients from the Oslo2 study with long-term follow-up (>12 years). Multi-Omics Factor Analysis (MOFA+) was employed to integrate transcriptomic, proteomic, and metabolomic data obtained from the tumor tissues. Our analysis revealed three prominent multi-omics clusters of BC patients with significantly different long-term prognoses (p = 0.005). The multi-omics clusters were validated in two independent large cohorts, METABRIC and TCGA. Importantly, a lack of prognostic association to long-term follow-up above 12 years in the previously established intrinsic subtypes was shown for these cohorts. Through a systems-biology approach, we identified varying enrichment levels of cell-cycle and immune-related pathways among the prognostic clusters. Integrated multi-omics analysis of BC revealed three distinct clusters with unique clinical and biological characteristics. Notably, these multi-omics clusters displayed robust associations with long-term survival, outperforming the established intrinsic subtypes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌多组学综合分析揭示了不同的长期预后亚型。
乳腺癌(BC)是全球癌症相关死亡的主要原因。乳腺癌的多样性和异质性给生存预测带来了挑战,因为诊断相似的患者对治疗的反应往往不同。通过基因表达谱分析已经建立了与临床相关的 BC 固有亚型,并已在临床中应用。虽然这些固有亚型与临床结果有显著关联,但其5年以上的长期生存预测往往偏离预期的临床结果。本研究旨在基于综合多组学分析,确定BC自然发生的长期预后亚组。本研究纳入了奥斯陆2研究中335名未经治疗的BC患者的临床队列,并进行了长期随访(>12年)。研究采用了多组学因子分析(MOFA+)来整合从肿瘤组织中获得的转录组学、蛋白质组学和代谢组学数据。我们的分析揭示了三个显著的多组学群组,这些群组的 BC 患者的长期预后存在显著差异(p = 0.005)。这些多组学集群在两个独立的大型队列(METABRIC 和 TCGA)中得到了验证。重要的是,在这些队列中,以前建立的内在亚型在超过 12 年的长期随访中缺乏预后关联。通过系统生物学方法,我们在预后群组中发现了细胞周期和免疫相关通路的不同富集水平。对 BC 进行多组学综合分析后,发现了三个具有独特临床和生物学特征的不同群组。值得注意的是,这些多组学集群与长期存活率有着密切的联系,优于已确定的固有亚型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncogenesis
Oncogenesis ONCOLOGY-
CiteScore
11.90
自引率
0.00%
发文量
70
审稿时长
26 weeks
期刊介绍: Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.
期刊最新文献
The branched N-glycan of PD-L1 predicts immunotherapy responses in patients with recurrent/metastatic HNSCC. DKK1 as a chemoresistant protein modulates oxaliplatin responses in colorectal cancer. NRF2 signaling plays an essential role in cancer progression through the NRF2-GPX2-NOTCH3 axis in head and neck squamous cell carcinoma. TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma Tumor suppressor BAP1 suppresses disulfidptosis through the regulation of SLC7A11 and NADPH levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1