首页 > 最新文献

Oncogenesis最新文献

英文 中文
Sertraline/chloroquine combination therapy to target hypoxic and immunosuppressive serine/glycine synthesis-dependent glioblastomas. 针对缺氧和免疫抑制丝氨酸/甘氨酸合成依赖性胶质母细胞瘤的舍曲林/氯喹联合疗法。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-13 DOI: 10.1038/s41389-024-00540-3
Anaís Sánchez-Castillo, Kim G Savelkouls, Alessandra Baldini, Judith Hounjet, Pierre Sonveaux, Paulien Verstraete, Kim De Keersmaecker, Barbara Dewaele, Benny Björkblom, Beatrice Melin, Wendy Y Wu, Rickard L Sjöberg, Kasper M A Rouschop, Martijn P G Broen, Marc Vooijs, Kim R Kampen

The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPHV116I showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/glyhigh glioblastoma models. Interestingly, ser/glyhigh glioblastomas, including PSPHamp and PSPHV116I, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/glyhigh glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/glyhigh cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/glyhigh glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.

丝氨酸/甘氨酸(ser/gly)合成途径是从糖酵解分支出来的,在大约30%的癌症中会被过度激活。在约 13% 的胶质母细胞瘤病例中,我们观察到编码 PSPH 酶的基因频繁扩增和罕见突变,该酶催化丝氨酸合成的最后一步。这促使我们揭示 PSPH 基因改变和随后的丝氨酸/甘氨酸代谢失调在胶质母细胞瘤发病机制中的相关性。过表达 PSPH 和 PSPHV116I 的原代胶质母细胞瘤细胞显示出更强的克隆生成能力、细胞增殖和迁移能力,核苷酸合成和还原性 NAD(P) 的利用率也随之升高。我们以前曾发现舍曲林是一种血清/甘氨酸合成抑制剂,并探讨了它与临床预试的氯喹联合使用,以血清/甘氨酸含量高的胶质母细胞瘤模型为靶点的次优剂量疗效。有趣的是,包括 PSPHamp 和 PSPHV116I 在内的高血清/高糖胶质母细胞瘤对联合疗法显示出选择性协同增殖抑制作用。PSPH基因敲除严重影响了ser/glyhigh胶质母细胞瘤的克隆性和增殖,同时增加了其对氯喹治疗的敏感性。代谢物分析表明,舍曲林/氯喹联合治疗可阻断NADH和ATP的生成,限制核苷酸的合成,从而抑制胶质母细胞瘤的增殖。我们之前的研究强调了高血清/高甘氨酸癌细胞在免疫抑制水平上对其微环境的调节。为此,PSPH 的高表达预示着胶质母细胞瘤患者对免疫检查点疗法的反应不佳。有趣的是,我们发现胶质母细胞瘤中 PSPH 的扩增促进了免疫抑制因子 galectin-1 的表达,而舍曲林治疗可抑制 galectin-1 的表达。总之,我们发现血清/甘氨酰高的胶质母细胞瘤具有增强克隆性、迁移性和抑制免疫系统的特点,这可以通过舍曲林/氯喹联合治疗来解决,为这一亚群的胶质母细胞瘤患者提供了新的治疗机会。
{"title":"Sertraline/chloroquine combination therapy to target hypoxic and immunosuppressive serine/glycine synthesis-dependent glioblastomas.","authors":"Anaís Sánchez-Castillo, Kim G Savelkouls, Alessandra Baldini, Judith Hounjet, Pierre Sonveaux, Paulien Verstraete, Kim De Keersmaecker, Barbara Dewaele, Benny Björkblom, Beatrice Melin, Wendy Y Wu, Rickard L Sjöberg, Kasper M A Rouschop, Martijn P G Broen, Marc Vooijs, Kim R Kampen","doi":"10.1038/s41389-024-00540-3","DOIUrl":"10.1038/s41389-024-00540-3","url":null,"abstract":"<p><p>The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPH<sup>V116I</sup> showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/gly<sup>high</sup> glioblastoma models. Interestingly, ser/gly<sup>high</sup> glioblastomas, including PSPH<sup>amp</sup> and PSPH<sup>V116I</sup>, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/gly<sup>high</sup> glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/gly<sup>high</sup> cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/gly<sup>high</sup> glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"39"},"PeriodicalIF":5.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Condensate remodeling reorganizes innate SS18 in synovial sarcomagenesis. 凝结重塑重组滑膜肉瘤形成过程中的先天性 SS18
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-29 DOI: 10.1038/s41389-024-00539-w
Pengli Li, Ziwei Zhai, Yixin Fan, Wei Li, Minjing Ke, Xiaoxi Li, Huiru Gao, Yu Fu, Zhaoyi Ma, Wenhui Zhang, Hongyan Yi, Jin Ming, Yue Qin, Bo Wang, Junqi Kuang, Duanqing Pei

SS18-SSX onco-fusion protein formed through aberrant chromosomal translocation t (X, 18; p11, q11), is the hallmark and plays a critical role in synovial sarcomagenesis. The recent works indicated that both the pathological SS18-SSX tumorigenic fusion and the corresponding intrinsic physiological SS18 protein can form condensates but appear to have disparate properties. The underlying regulatory mechanism and the consequent biological significance remain largely unknown. We show that the physical properties of oncogenic fusion protein SS18-SSX condensates within cells undergo alterations compared to the proto-oncogene protein SS18. By small-molecule screening and mutant assay, we identified the recognition of H2AK119ub histone modification could account for the distinctive properties of SS18-SSX1 condensates. Notably, we show that SS18-SSX1 condensates have impact on SS18 condensates and hijack that in a phase separation manner, resulting in the relocation of protein SS18 to the H2AK119ub modification targeted by SS18-SSX1. Consequently, this leads to the downregulation of tumor suppressor genes occupied by SS18 physiologically, like CAV1 and DAB2. These results reveal the underlying mechanism of genomic disorder and tumorigenesis caused by the remodeling of oncoprotein SS18-SSX1 condensates at the macroscopic level.

通过染色体异常易位 t (X, 18; p11, q11) 形成的 SS18-SSX 协同融合蛋白是滑膜肉瘤发生的标志,在滑膜肉瘤发生中起着关键作用。最近的研究表明,病理 SS18-SSX 致瘤融合蛋白和相应的内在生理性 SS18 蛋白都能形成凝集物,但似乎具有不同的性质。其潜在的调控机制及其生物学意义在很大程度上仍然未知。我们的研究表明,与原癌基因蛋白 SS18 相比,致癌融合蛋白 SS18-SSX 凝聚体在细胞内的物理特性发生了改变。通过小分子筛选和突变试验,我们发现对 H2AK119ub 组蛋白修饰的识别可能是 SS18-SSX1 凝聚物具有独特性质的原因。值得注意的是,我们发现SS18-SSX1凝聚物对SS18凝聚物有影响,并以相分离的方式劫持SS18凝聚物,导致蛋白质SS18转移到SS18-SSX1所靶向的H2AK119ub修饰上。因此,这导致了 SS18 生理占用的肿瘤抑制基因的下调,如 CAV1 和 DAB2。这些结果揭示了肿瘤蛋白 SS18-SSX1 凝聚体在宏观上重塑导致基因组紊乱和肿瘤发生的内在机制。
{"title":"Condensate remodeling reorganizes innate SS18 in synovial sarcomagenesis.","authors":"Pengli Li, Ziwei Zhai, Yixin Fan, Wei Li, Minjing Ke, Xiaoxi Li, Huiru Gao, Yu Fu, Zhaoyi Ma, Wenhui Zhang, Hongyan Yi, Jin Ming, Yue Qin, Bo Wang, Junqi Kuang, Duanqing Pei","doi":"10.1038/s41389-024-00539-w","DOIUrl":"10.1038/s41389-024-00539-w","url":null,"abstract":"<p><p>SS18-SSX onco-fusion protein formed through aberrant chromosomal translocation t (X, 18; p11, q11), is the hallmark and plays a critical role in synovial sarcomagenesis. The recent works indicated that both the pathological SS18-SSX tumorigenic fusion and the corresponding intrinsic physiological SS18 protein can form condensates but appear to have disparate properties. The underlying regulatory mechanism and the consequent biological significance remain largely unknown. We show that the physical properties of oncogenic fusion protein SS18-SSX condensates within cells undergo alterations compared to the proto-oncogene protein SS18. By small-molecule screening and mutant assay, we identified the recognition of H2AK119ub histone modification could account for the distinctive properties of SS18-SSX1 condensates. Notably, we show that SS18-SSX1 condensates have impact on SS18 condensates and hijack that in a phase separation manner, resulting in the relocation of protein SS18 to the H2AK119ub modification targeted by SS18-SSX1. Consequently, this leads to the downregulation of tumor suppressor genes occupied by SS18 physiologically, like CAV1 and DAB2. These results reveal the underlying mechanism of genomic disorder and tumorigenesis caused by the remodeling of oncoprotein SS18-SSX1 condensates at the macroscopic level.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"38"},"PeriodicalIF":5.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitin-specific protease 10 determines colorectal cancer outcome by modulating epidermal growth factor signaling via inositol polyphosphate-4-phosphatase type IIB. 泛素特异性蛋白酶 10 通过调节肌醇多磷酸-4-磷酸酶 IIB 型表皮生长因子信号转导,决定结直肠癌的预后。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41389-024-00538-x
Kateryna Kubaichuk, Timo Seitz, Ulrich Bergmann, Virpi Glumoff, Daniela Mennerich, Thomas Kietzmann

Although there have been advances in understanding colorectal cancer (CRC) pathogenesis, significant gaps still exist, highlighting the need for deeper insights. Dysregulated protein homeostasis, including perturbations in the epidermal growth factor receptor (EGFR) pathway, remains a focal point in CRC pathogenesis. Within this context, the roles of ubiquitin ligases and deubiquitinases have attracted attention, but exploration of their precise contributions is still in its early stages. To address this gap, we investigated the involvement of the deubiquitinase USP10 in CRC. Our in vitro and in vivo study reveals a new paradigm in CRC biology and unravels a novel mechanistic axis, demonstrating for the first time the involvement of inositol polyphosphate 4-phosphatase type II B (INPP4B) in USP10-mediated CRC modulation. Specifically, our study demonstrates that the loss of USP10 results in reduced sensitivity to the EGFR tyrosine kinase inhibitors gefitinib and osimertinib. This is accompanied by a decrease in the activation of the AKT1/PKB pathway upon EGF stimulation, which is mediated by INPP4B. Importantly, in vivo xenograft experiments validate these findings and highlight the crucial role of USP10, particularly in conjunction with INPP4B, in driving CRC progression. The findings enhance our understanding of CRC pathobiology and reveal a new regulatory axis involving USP10 and INPP4B in CRC progression. This unique insight identifies USP10 and INPP4B as potential therapeutic targets in CRC.

尽管人们对结直肠癌(CRC)发病机理的认识取得了进展,但仍然存在巨大的差距,这凸显了深入了解的必要性。蛋白稳态失调,包括表皮生长因子受体(EGFR)通路的干扰,仍然是 CRC 发病机制的一个焦点。在此背景下,泛素连接酶和去泛素化酶的作用引起了人们的关注,但对其确切贡献的探索仍处于早期阶段。为了填补这一空白,我们研究了去泛素酶 USP10 在 CRC 中的参与情况。我们的体外和体内研究揭示了 CRC 生物学的一个新范式,并揭示了一个新的机制轴,首次证明了肌醇多磷酸 4-磷酸酶 II B 型(INPP4B)参与了 USP10 介导的 CRC 调节。具体来说,我们的研究表明,USP10 的缺失会导致对表皮生长因子受体酪氨酸激酶抑制剂吉非替尼和奥希替尼的敏感性降低。与此同时,由 INPP4B 介导的 AKT1/PKB 通路在 EGF 刺激下的活化程度也会降低。重要的是,体内异种移植实验验证了这些发现,并强调了 USP10(尤其是与 INPP4B 共同作用时)在推动 CRC 进展中的关键作用。这些发现加深了我们对 CRC 病理生物学的理解,并揭示了 CRC 进展过程中涉及 USP10 和 INPP4B 的新调控轴。这一独特见解将 USP10 和 INPP4B 确定为 CRC 的潜在治疗靶点。
{"title":"Ubiquitin-specific protease 10 determines colorectal cancer outcome by modulating epidermal growth factor signaling via inositol polyphosphate-4-phosphatase type IIB.","authors":"Kateryna Kubaichuk, Timo Seitz, Ulrich Bergmann, Virpi Glumoff, Daniela Mennerich, Thomas Kietzmann","doi":"10.1038/s41389-024-00538-x","DOIUrl":"10.1038/s41389-024-00538-x","url":null,"abstract":"<p><p>Although there have been advances in understanding colorectal cancer (CRC) pathogenesis, significant gaps still exist, highlighting the need for deeper insights. Dysregulated protein homeostasis, including perturbations in the epidermal growth factor receptor (EGFR) pathway, remains a focal point in CRC pathogenesis. Within this context, the roles of ubiquitin ligases and deubiquitinases have attracted attention, but exploration of their precise contributions is still in its early stages. To address this gap, we investigated the involvement of the deubiquitinase USP10 in CRC. Our in vitro and in vivo study reveals a new paradigm in CRC biology and unravels a novel mechanistic axis, demonstrating for the first time the involvement of inositol polyphosphate 4-phosphatase type II B (INPP4B) in USP10-mediated CRC modulation. Specifically, our study demonstrates that the loss of USP10 results in reduced sensitivity to the EGFR tyrosine kinase inhibitors gefitinib and osimertinib. This is accompanied by a decrease in the activation of the AKT1/PKB pathway upon EGF stimulation, which is mediated by INPP4B. Importantly, in vivo xenograft experiments validate these findings and highlight the crucial role of USP10, particularly in conjunction with INPP4B, in driving CRC progression. The findings enhance our understanding of CRC pathobiology and reveal a new regulatory axis involving USP10 and INPP4B in CRC progression. This unique insight identifies USP10 and INPP4B as potential therapeutic targets in CRC.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"37"},"PeriodicalIF":5.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The branched N-glycan of PD-L1 predicts immunotherapy responses in patients with recurrent/metastatic HNSCC. PD-L1 的支链 N-聚糖可预测复发/转移性 HNSCC 患者的免疫疗法反应。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-02 DOI: 10.1038/s41389-024-00532-3
Huai-Cheng Huang, Yen-Lin Huang, Yi-Ju Chen, Hsin-Yi Wu, Chia-Lang Hsu, Hsiang-Fong Kao, Bin-Chi Liao, Min-Shu Hsieh, Neng-Yu Lin, Yu-Hao Liao, Hsin-Lin Chen, Chun-Nan Chen, Tseng-Cheng Chen, Cheng-Ping Wang, Tsung-Lin Yang, Min-Chuan Huang, Mei-Chun Lin, Pei-Jen Lou

Immunotherapy has revolutionized cancer treatment, but the lack of a reliable predictive biomarker for treatment response remains a challenge. Alpha-1,6-Mannosylglycoprotein 6-β-N-Acetylglucosaminyltransferase 5 (MGAT5) is a key regulator of complex N-glycan synthesis, and its dysregulation is associated with cancer progression. The lectin Phaseolus vulgaris leukoagglutinin (PHA-L) specifically binds to mature MGAT5 products. Previous studies have indicated elevated PHA-L staining in head and neck squamous cell carcinoma (HNSCC), which implies increased activity of MGAT5. However, the specific role of MGAT5 in HNSCC remains unclear. In this study, we found significantly higher PHA-L staining and MGAT5 expression in HNSCC tumors compared to adjacent non-tumor tissues. Using a mass spectrometry (MS)-based glycoproteomic approach, we identified 163 potential protein substrates of MGAT5. Functional analysis revealed that protein substrates of MGAT5 regulated pathways related to T cell proliferation and activation. We further discovered that PD-L1 was among the protein substrates of MGAT5, and the expression of MGAT5 protected tumor cells from cytotoxic T lymphocyte (CTL) killing. Treatment of nivolumab alleviated the protective effects of MGAT5 on CTL activity. Consistently, patients with MGAT5-positive tumors showed improved responses to immunotherapy compared to those with MGAT5-negative tumors. Using purified PD-L1 from HNSCC cells and a glycoproteomic approach, we further deciphered that the N35 and N200 sites carry the majority of complex N-glycans on PD-L1. Our findings highlight the critical role of MGAT5-mediated branched N-glycans on PD-L1 in modulating the interaction with the immune checkpoint receptor PD-1. Consequently, we propose that MGAT5 could serve as a biomarker to predict patients' responses to anti-PD-1 therapy. Furthermore, targeting the branched N-glycans at N35 and N200 of PD-L1 may lead to the development of novel diagnostic and therapeutic approaches.

免疫疗法给癌症治疗带来了革命性的变化,但缺乏可靠的预测治疗反应的生物标志物仍然是一项挑战。α-1,6-甘露糖基糖蛋白 6-β-N-Acetylglucosaminyltransferase 5(MGAT5)是复杂 N-糖合成的关键调控因子,它的失调与癌症进展有关。凝集素 Phaseolus vulgaris leukoagglutinin (PHA-L) 能与成熟的 MGAT5 产物特异性结合。以往的研究表明,头颈部鳞状细胞癌(HNSCC)的 PHA-L 染色升高,这意味着 MGAT5 的活性增加。然而,MGAT5 在 HNSCC 中的具体作用仍不清楚。在这项研究中,我们发现 HNSCC 肿瘤中 PHA-L 染色和 MGAT5 表达明显高于邻近的非肿瘤组织。利用基于质谱(MS)的糖蛋白组学方法,我们确定了 163 种 MGAT5 的潜在蛋白底物。功能分析显示,MGAT5 的蛋白底物调控与 T 细胞增殖和活化相关的通路。我们进一步发现,PD-L1是MGAT5的蛋白底物之一,而MGAT5的表达能保护肿瘤细胞免受细胞毒性T淋巴细胞(CTL)的杀伤。nivolumab的治疗减轻了MGAT5对CTL活性的保护作用。同样,与MGAT5阴性肿瘤患者相比,MGAT5阳性肿瘤患者对免疫疗法的反应更好。利用从 HNSCC 细胞中纯化的 PD-L1 和糖蛋白组学方法,我们进一步破译了 N35 和 N200 位点携带了 PD-L1 上大部分复杂的 N-聚糖。我们的发现凸显了 MGAT5 介导的 PD-L1 上的支化 N-聚糖在调节与免疫检查点受体 PD-1 的相互作用中的关键作用。因此,我们建议将 MGAT5 作为一种生物标记物来预测患者对抗 PD-1 疗法的反应。此外,以 PD-L1 的 N35 和 N200 处的支链 N-糖为靶点可能会开发出新型诊断和治疗方法。
{"title":"The branched N-glycan of PD-L1 predicts immunotherapy responses in patients with recurrent/metastatic HNSCC.","authors":"Huai-Cheng Huang, Yen-Lin Huang, Yi-Ju Chen, Hsin-Yi Wu, Chia-Lang Hsu, Hsiang-Fong Kao, Bin-Chi Liao, Min-Shu Hsieh, Neng-Yu Lin, Yu-Hao Liao, Hsin-Lin Chen, Chun-Nan Chen, Tseng-Cheng Chen, Cheng-Ping Wang, Tsung-Lin Yang, Min-Chuan Huang, Mei-Chun Lin, Pei-Jen Lou","doi":"10.1038/s41389-024-00532-3","DOIUrl":"10.1038/s41389-024-00532-3","url":null,"abstract":"<p><p>Immunotherapy has revolutionized cancer treatment, but the lack of a reliable predictive biomarker for treatment response remains a challenge. Alpha-1,6-Mannosylglycoprotein 6-β-N-Acetylglucosaminyltransferase 5 (MGAT5) is a key regulator of complex N-glycan synthesis, and its dysregulation is associated with cancer progression. The lectin Phaseolus vulgaris leukoagglutinin (PHA-L) specifically binds to mature MGAT5 products. Previous studies have indicated elevated PHA-L staining in head and neck squamous cell carcinoma (HNSCC), which implies increased activity of MGAT5. However, the specific role of MGAT5 in HNSCC remains unclear. In this study, we found significantly higher PHA-L staining and MGAT5 expression in HNSCC tumors compared to adjacent non-tumor tissues. Using a mass spectrometry (MS)-based glycoproteomic approach, we identified 163 potential protein substrates of MGAT5. Functional analysis revealed that protein substrates of MGAT5 regulated pathways related to T cell proliferation and activation. We further discovered that PD-L1 was among the protein substrates of MGAT5, and the expression of MGAT5 protected tumor cells from cytotoxic T lymphocyte (CTL) killing. Treatment of nivolumab alleviated the protective effects of MGAT5 on CTL activity. Consistently, patients with MGAT5-positive tumors showed improved responses to immunotherapy compared to those with MGAT5-negative tumors. Using purified PD-L1 from HNSCC cells and a glycoproteomic approach, we further deciphered that the N35 and N200 sites carry the majority of complex N-glycans on PD-L1. Our findings highlight the critical role of MGAT5-mediated branched N-glycans on PD-L1 in modulating the interaction with the immune checkpoint receptor PD-1. Consequently, we propose that MGAT5 could serve as a biomarker to predict patients' responses to anti-PD-1 therapy. Furthermore, targeting the branched N-glycans at N35 and N200 of PD-L1 may lead to the development of novel diagnostic and therapeutic approaches.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"36"},"PeriodicalIF":5.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NRF2 signaling plays an essential role in cancer progression through the NRF2-GPX2-NOTCH3 axis in head and neck squamous cell carcinoma. 在头颈部鳞状细胞癌中,NRF2 信号通过 NRF2-GPX2-NOTCH3 轴在癌症进展中发挥重要作用。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-27 DOI: 10.1038/s41389-024-00536-z
Xiaoye Jin, Xiayuan Lou, Haoxiang Qi, Chao Zheng, Bo Li, Xuerong Siwu, Ren Liu, Qiaoli Lv, An Zhao, Jian Ruan, Ming Jiang

The activation of nuclear factor erythroid 2-related factor 2 (NRF2) has been observed in various cancers. Yet its exact contribution to the development of head and neck squamous cell carcinoma (HNSCC) remains undetermined. We previously found that NRF2 signaling is critical for the differentiation of squamous basal progenitor cells, while disruption of NRF2 causes basal cell hyperplasia. In this study, we revealed a correlation between elevated NRF2 activity and poor outcomes in HNSCC patients. We demonstrated that NRF2 facilitates tumor proliferation, migration, and invasion, as evidenced by both in vitro and in vivo studies. Significantly, NRF2 augments the expression of the antioxidant enzyme GPX2, thereby enhancing the proliferative, migratory, and invasive properties of HNSCC cells. Activation of GPX2 is critical for sustaining cancer stem cells (CSCs) by up-regulating NOTCH3, a key driver of cancer progression. These results elucidate that NRF2 regulates HNSCC progression through the NRF2-GPX2-NOTCH3 axis. Our findings proposed that pharmacological targeting of the NRF2-GPX2-NOTCH3 axis could be a potential therapeutic approach against HNSCC.

在多种癌症中都观察到了核因子红细胞2相关因子2(NRF2)的活化。然而,它对头颈部鳞状细胞癌(HNSCC)发病的确切作用仍未确定。我们之前发现,NRF2 信号传导对鳞状基底祖细胞的分化至关重要,而 NRF2 信号传导中断会导致基底细胞增生。在本研究中,我们揭示了 NRF2 活性升高与 HNSCC 患者不良预后之间的相关性。我们通过体外和体内研究证明,NRF2 有助于肿瘤的增殖、迁移和侵袭。值得注意的是,NRF2 能增强抗氧化酶 GPX2 的表达,从而增强 HNSCC 细胞的增殖、迁移和侵袭特性。GPX2的激活对于通过上调NOTCH3(癌症进展的关键驱动因素)维持癌症干细胞(CSCs)至关重要。这些结果阐明了NRF2通过NRF2-GPX2-NOTCH3轴调控HNSCC的进展。我们的研究结果表明,以NRF2-GPX2-NOTCH3轴为药理靶点可能是治疗HNSCC的一种潜在方法。
{"title":"NRF2 signaling plays an essential role in cancer progression through the NRF2-GPX2-NOTCH3 axis in head and neck squamous cell carcinoma.","authors":"Xiaoye Jin, Xiayuan Lou, Haoxiang Qi, Chao Zheng, Bo Li, Xuerong Siwu, Ren Liu, Qiaoli Lv, An Zhao, Jian Ruan, Ming Jiang","doi":"10.1038/s41389-024-00536-z","DOIUrl":"https://doi.org/10.1038/s41389-024-00536-z","url":null,"abstract":"<p><p>The activation of nuclear factor erythroid 2-related factor 2 (NRF2) has been observed in various cancers. Yet its exact contribution to the development of head and neck squamous cell carcinoma (HNSCC) remains undetermined. We previously found that NRF2 signaling is critical for the differentiation of squamous basal progenitor cells, while disruption of NRF2 causes basal cell hyperplasia. In this study, we revealed a correlation between elevated NRF2 activity and poor outcomes in HNSCC patients. We demonstrated that NRF2 facilitates tumor proliferation, migration, and invasion, as evidenced by both in vitro and in vivo studies. Significantly, NRF2 augments the expression of the antioxidant enzyme GPX2, thereby enhancing the proliferative, migratory, and invasive properties of HNSCC cells. Activation of GPX2 is critical for sustaining cancer stem cells (CSCs) by up-regulating NOTCH3, a key driver of cancer progression. These results elucidate that NRF2 regulates HNSCC progression through the NRF2-GPX2-NOTCH3 axis. Our findings proposed that pharmacological targeting of the NRF2-GPX2-NOTCH3 axis could be a potential therapeutic approach against HNSCC.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"35"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DKK1 as a chemoresistant protein modulates oxaliplatin responses in colorectal cancer. DKK1 作为一种化疗抗性蛋白可调节奥沙利铂在结直肠癌中的反应。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-27 DOI: 10.1038/s41389-024-00537-y
Chi-Che Hsieh, Ting-Wei Li, Chun-Chun Li, Shang-Hung Chen, You-Lin Wei, Nai-Jung Chiang, Che-Hung Shen

Oxaliplatin is effective against colorectal cancer (CRC), but resistance hampers treatment. We found upregulated Dickkopf-1 (DKK1, a secreted protein) in oxaliplatin-resistant (OR) CRC cell lines and DKK1 levels increased by more than 2-fold in approximately 50% of oxaliplatin-resistant CRC tumors. DKK1 activates AKT via cytoskeleton-associated protein 4 (CKAP4, a DKK1 receptor), modulating oxaliplatin responses in vitro and in vivo. The leucine zipper (LZ) domain of CKAP4 and cysteine-rich domain 1 (CRD1) of secreted DKK1 are crucial for their interaction and AKT signaling. By utilizing the LZ protein, we disrupted DKK1 signaling, enhancing oxaliplatin sensitivity in OR CRC cells and xenograft tumors. This suggests that DKK1 as a chemoresistant factor in CRC via AKT activation. Targeting DKK1 with the LZ protein offers a promising therapeutic strategy for oxaliplatin-resistant CRC with high DKK1 levels. This study sheds light on oxaliplatin resistance mechanisms and proposes an innovative intervention for managing this challenge.

奥沙利铂对结直肠癌(CRC)有效,但耐药性阻碍了治疗。我们发现奥沙利铂耐药(OR)CRC细胞系中的Dickkopf-1(DKK1,一种分泌蛋白)上调,约50%的奥沙利铂耐药CRC肿瘤中DKK1水平增加了2倍以上。DKK1通过细胞骨架相关蛋白4(CKAP4,一种DKK1受体)激活AKT,从而调节体外和体内的奥沙利铂反应。CKAP4 的亮氨酸拉链(LZ)结构域和分泌型 DKK1 的富半胱氨酸结构域 1(CRD1)对于它们之间的相互作用和 AKT 信号转导至关重要。通过利用 LZ 蛋白,我们破坏了 DKK1 信号传导,提高了奥沙利铂在 OR CRC 细胞和异种移植肿瘤中的敏感性。这表明,DKK1是通过AKT激活的CRC化疗耐药因子。用LZ蛋白靶向DKK1为高DKK1水平的奥沙利铂耐药CRC提供了一种有前景的治疗策略。这项研究揭示了奥沙利铂的耐药机制,并提出了应对这一挑战的创新干预措施。
{"title":"DKK1 as a chemoresistant protein modulates oxaliplatin responses in colorectal cancer.","authors":"Chi-Che Hsieh, Ting-Wei Li, Chun-Chun Li, Shang-Hung Chen, You-Lin Wei, Nai-Jung Chiang, Che-Hung Shen","doi":"10.1038/s41389-024-00537-y","DOIUrl":"https://doi.org/10.1038/s41389-024-00537-y","url":null,"abstract":"<p><p>Oxaliplatin is effective against colorectal cancer (CRC), but resistance hampers treatment. We found upregulated Dickkopf-1 (DKK1, a secreted protein) in oxaliplatin-resistant (OR) CRC cell lines and DKK1 levels increased by more than 2-fold in approximately 50% of oxaliplatin-resistant CRC tumors. DKK1 activates AKT via cytoskeleton-associated protein 4 (CKAP4, a DKK1 receptor), modulating oxaliplatin responses in vitro and in vivo. The leucine zipper (LZ) domain of CKAP4 and cysteine-rich domain 1 (CRD1) of secreted DKK1 are crucial for their interaction and AKT signaling. By utilizing the LZ protein, we disrupted DKK1 signaling, enhancing oxaliplatin sensitivity in OR CRC cells and xenograft tumors. This suggests that DKK1 as a chemoresistant factor in CRC via AKT activation. Targeting DKK1 with the LZ protein offers a promising therapeutic strategy for oxaliplatin-resistant CRC with high DKK1 levels. This study sheds light on oxaliplatin resistance mechanisms and proposes an innovative intervention for managing this challenge.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"34"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma TFCP2L1通过调节肝细胞癌中的NANOG/STAT3通路驱动干性并增强其对索拉非尼治疗的耐受性
IF 6.2 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-12 DOI: 10.1038/s41389-024-00534-1
Dongbo Qiu, Tiantian Wang, Yi Xiong, Kun Li, Xiusheng Qiu, Yuan Feng, Qinghai Lian, Yunfei Qin, Kunpeng Liu, Qi Zhang, Changchang Jia

Hepatocellular carcinoma (HCC) is a prevalent and aggressive malignancy associated with high risks of recurrence and metastasis. Liver cancer stem cells (CSCs) are increasingly recognized as pivotal drivers of these processes. In our previous research, we demonstrated the involvement of TFCP2L1 in maintaining the pluripotency of embryonic stem cells. However, its relevance to liver CSCs remains unexplored. In this study, we report an inverse correlation between TFCP2L1 protein levels in HCC tissue and patient outcomes. The knockdown of TFCP2L1 significantly reduced HCC cell proliferation, invasion, metastasis, clonal formation, and sphere-forming capacity, while its overexpression enhanced these functions. In addition, experiments using a nude mouse model confirmed TFCP2L1’s essential role in liver CSCs’ function and tumorigenic potential. Mechanistically, we showed that TFCP2L1 promotes the stemness of CSCs by upregulating NANOG, which subsequently activates the JAK/STAT3 pathway, thereby contributing to HCC pathogenesis. Importantly, we identified a specific small molecule targeting TFCP2L1’s active domain, which, in combination with Sorafenib, sensitizes hepatoma cells to treatment. Together, these findings underscore TFCP2L1’s pathological significance in HCC progression, supporting its potential as a prognostic biomarker and therapeutic target in this disease.

肝细胞癌(HCC)是一种常见的侵袭性恶性肿瘤,复发和转移的风险很高。肝癌干细胞(CSCs)越来越被认为是这些过程的关键驱动因素。在我们之前的研究中,我们证实了TFCP2L1参与维持胚胎干细胞的多能性。然而,它与肝脏干细胞的相关性仍未得到探讨。在本研究中,我们报告了HCC组织中TFCP2L1蛋白水平与患者预后之间的反相关性。敲除 TFCP2L1 能显著减少 HCC 细胞的增殖、侵袭、转移、克隆形成和球形成能力,而过表达则能增强这些功能。此外,利用裸鼠模型进行的实验证实了 TFCP2L1 在肝脏 CSCs 功能和致瘤潜能中的重要作用。从机理上讲,我们发现TFCP2L1通过上调NANOG促进CSCs的干性,进而激活JAK/STAT3通路,从而导致HCC发病。重要的是,我们发现了一种靶向TFCP2L1活性结构域的特异性小分子,它与索拉非尼联用可使肝癌细胞对治疗敏感。这些发现共同强调了TFCP2L1在HCC进展中的病理意义,支持其作为该疾病预后生物标志物和治疗靶点的潜力。
{"title":"TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma","authors":"Dongbo Qiu, Tiantian Wang, Yi Xiong, Kun Li, Xiusheng Qiu, Yuan Feng, Qinghai Lian, Yunfei Qin, Kunpeng Liu, Qi Zhang, Changchang Jia","doi":"10.1038/s41389-024-00534-1","DOIUrl":"https://doi.org/10.1038/s41389-024-00534-1","url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a prevalent and aggressive malignancy associated with high risks of recurrence and metastasis. Liver cancer stem cells (CSCs) are increasingly recognized as pivotal drivers of these processes. In our previous research, we demonstrated the involvement of TFCP2L1 in maintaining the pluripotency of embryonic stem cells. However, its relevance to liver CSCs remains unexplored. In this study, we report an inverse correlation between TFCP2L1 protein levels in HCC tissue and patient outcomes. The knockdown of TFCP2L1 significantly reduced HCC cell proliferation, invasion, metastasis, clonal formation, and sphere-forming capacity, while its overexpression enhanced these functions. In addition, experiments using a nude mouse model confirmed TFCP2L1’s essential role in liver CSCs’ function and tumorigenic potential. Mechanistically, we showed that TFCP2L1 promotes the stemness of CSCs by upregulating NANOG, which subsequently activates the JAK/STAT3 pathway, thereby contributing to HCC pathogenesis. Importantly, we identified a specific small molecule targeting TFCP2L1’s active domain, which, in combination with Sorafenib, sensitizes hepatoma cells to treatment. Together, these findings underscore TFCP2L1’s pathological significance in HCC progression, supporting its potential as a prognostic biomarker and therapeutic target in this disease.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. 更正:双氢青蒿素通过 JARID2/miR-7/miR-34a 依赖性下调 Axl 抑制前列腺癌。
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-12 DOI: 10.1038/s41389-024-00533-2
Juliano D Paccez, Kristal Duncan, Durairaj Sekar, Ricardo G Correa, Yihong Wang, Xuesong Gu, Manoj Bashin, Kelly Chibale, Towia A Libermann, Luiz F Zerbini
{"title":"Correction: Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl.","authors":"Juliano D Paccez, Kristal Duncan, Durairaj Sekar, Ricardo G Correa, Yihong Wang, Xuesong Gu, Manoj Bashin, Kelly Chibale, Towia A Libermann, Luiz F Zerbini","doi":"10.1038/s41389-024-00533-2","DOIUrl":"https://doi.org/10.1038/s41389-024-00533-2","url":null,"abstract":"","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"32"},"PeriodicalIF":5.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor suppressor BAP1 suppresses disulfidptosis through the regulation of SLC7A11 and NADPH levels 肿瘤抑制因子 BAP1 通过调节 SLC7A11 和 NADPH 水平抑制二硫化硫作用
IF 6.2 2区 医学 Q1 ONCOLOGY Pub Date : 2024-09-12 DOI: 10.1038/s41389-024-00535-0
Jin Wang, Minglin Wang, Shaobo Wu, Yanan Zhu, Kexin Fan, Yuhan Chen, Zhengtao Xiao, Jing Chen, Kangsheng Tu, Dongsheng Huang, Yilei Zhang, Qiuran Xu

BAP1, BRCA1-Associated Protein 1, serves as a novel tumor suppressor through the deubiquitination of monoubiquitination of H2A and subsequent gene transcriptional regulation. Regulated cell death like apoptosis or ferroptosis is considered an essential mechanism mediating tumor suppression. Previous reports, including ours, have demonstrated that BAP1 could promote apoptosis and ferroptosis to inhibit tumor development. Whether BAP1 regulated additional types of cell death remains unclear. Disulfidptosis is a recently identified novel cell death mode characterized by aberrant accumulation of intracellular disulfide (e.g., cystine) and depletion of NADPH. In this study, we first demonstrated that BAP1 could significantly protect disulfidptosis induced by glucose starvation, which is validated by various cell death inhibitors and the accumulation of disulfide bonds in the cytoskeleton proteins. BAP1 is known to inhibit SLC7A11 expression. We found that the protective effect of BAP1 against disulfidptosis was counteracted when overexpressing SLC7A11 or adding additional cystine. Conversely, BAP1-mediated suppression of disulfidptosis was largely abrogated when SLC7A11-mediated cystine uptake was inhibited by the knockout of SLC7A11 or erastin treatment. Besides, high BAP1 expression showed lower NADP+/NADPH levels, which might confer resistance to disulfidptosis. Consistent with these observations, the expression level of BAP1 was also positively correlated with NADPH-related genes in KIRC patients, though the underlying mechanism mediating NADPH regulation remains further investigation. In summary, our results revealed the role of BAP1 in the regulation disulfidptosis and provided new insights into the understanding of disulfidptosis in tumor development.

BAP1,即 BRCA1 相关蛋白 1,通过对 H2A 的单泛素化进行去泛素化以及随后的基因转录调控,成为一种新型肿瘤抑制因子。细胞凋亡或铁凋亡等调节性细胞死亡被认为是介导肿瘤抑制的重要机制。之前的报道(包括我们的研究)表明,BAP1 可促进细胞凋亡和铁凋亡,从而抑制肿瘤的发展。BAP1 是否还能调节其他类型的细胞死亡仍不清楚。二硫化ptosis是最近发现的一种新型细胞死亡模式,其特点是细胞内二硫化物(如胱氨酸)的异常积累和NADPH的耗竭。在这项研究中,我们首次证明了 BAP1 能显著保护葡萄糖饥饿诱导的二硫化ptosis,这一点已被各种细胞死亡抑制剂和细胞骨架蛋白中二硫键的积累所验证。众所周知,BAP1 可抑制 SLC7A11 的表达。我们发现,当过表达 SLC7A11 或添加额外的胱氨酸时,BAP1 对二硫化硫的保护作用会被抵消。相反,当通过敲除 SLC7A11 或厄拉斯汀处理抑制 SLC7A11 介导的胱氨酸摄取时,BAP1 介导的二硫化硫抑制作用在很大程度上被削弱。此外,BAP1的高表达显示了较低的NADP+/NADPH水平,这可能赋予了对二硫化硫的抗性。与这些观察结果一致的是,BAP1的表达水平也与KIRC患者的NADPH相关基因呈正相关,但NADPH调控的潜在机制仍有待进一步研究。总之,我们的研究结果揭示了 BAP1 在调控二硫化硫过程中的作用,为了解二硫化硫在肿瘤发生发展过程中的作用提供了新的视角。
{"title":"Tumor suppressor BAP1 suppresses disulfidptosis through the regulation of SLC7A11 and NADPH levels","authors":"Jin Wang, Minglin Wang, Shaobo Wu, Yanan Zhu, Kexin Fan, Yuhan Chen, Zhengtao Xiao, Jing Chen, Kangsheng Tu, Dongsheng Huang, Yilei Zhang, Qiuran Xu","doi":"10.1038/s41389-024-00535-0","DOIUrl":"https://doi.org/10.1038/s41389-024-00535-0","url":null,"abstract":"<p>BAP1, BRCA1-Associated Protein 1, serves as a novel tumor suppressor through the deubiquitination of monoubiquitination of H2A and subsequent gene transcriptional regulation. Regulated cell death like apoptosis or ferroptosis is considered an essential mechanism mediating tumor suppression. Previous reports, including ours, have demonstrated that BAP1 could promote apoptosis and ferroptosis to inhibit tumor development. Whether BAP1 regulated additional types of cell death remains unclear. Disulfidptosis is a recently identified novel cell death mode characterized by aberrant accumulation of intracellular disulfide (e.g., cystine) and depletion of NADPH. In this study, we first demonstrated that BAP1 could significantly protect disulfidptosis induced by glucose starvation, which is validated by various cell death inhibitors and the accumulation of disulfide bonds in the cytoskeleton proteins. BAP1 is known to inhibit SLC7A11 expression. We found that the protective effect of BAP1 against disulfidptosis was counteracted when overexpressing SLC7A11 or adding additional cystine. Conversely, BAP1-mediated suppression of disulfidptosis was largely abrogated when SLC7A11-mediated cystine uptake was inhibited by the knockout of SLC7A11 or erastin treatment. Besides, high BAP1 expression showed lower NADP<sup>+</sup>/NADPH levels, which might confer resistance to disulfidptosis. Consistent with these observations, the expression level of BAP1 was also positively correlated with NADPH-related genes in KIRC patients, though the underlying mechanism mediating NADPH regulation remains further investigation. In summary, our results revealed the role of BAP1 in the regulation disulfidptosis and provided new insights into the understanding of disulfidptosis in tumor development.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"68 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptidylarginine deiminase 3 modulates response to neratinib in HER2 positive breast cancer. 肽基精氨酸脱氨酶3调节HER2阳性乳腺癌患者对奈瑞替尼的反应
IF 5.9 2区 医学 Q1 ONCOLOGY Pub Date : 2024-08-04 DOI: 10.1038/s41389-024-00531-4
Inés Romero-Pérez, Elena Díaz-Rodríguez, Laura Sánchez-Díaz, Juan Carlos Montero, Atanasio Pandiella

Neratinib is a tyrosine kinase inhibitor that is used for the therapy of patients with HER2+ breast tumors. However, despite its clinical benefit, resistance to the drug may arise. Here we have created cellular models of neratinib resistance to investigate the mechanisms underlying such resistance. Chronic neratinib exposure of BT474 human HER2+ breast cancer cells resulted in the selection of several clones resistant to the antiproliferative action of the drug. The clones were characterized biochemically and biologically using a variety of techniques. These clones retained HER2 levels similar to parental cells. Knockdown experiments showed that the neratinib-resistant clones retained oncogenic dependence on HER2. Moreover, the tyrosine phosphorylation status of BT474 and the resistant clones was equally sensitive to neratinib. Transcriptomic and Western analyses showed that peptidylarginine deiminase 3 was overexpressed in the three neratinib-resistant clones studied but was undetectable in BT474 cells. Experiments performed in the neratinib-resistant clones showed that reduction of PADI3 or inhibition of its function restored sensitivity to the antiproliferative action of neratinib. Moreover, overexpression of FLAG-tagged PADI3 in BT474 cells provoked resistance to the antiproliferative action of neratinib. Together, these results uncover a role of PADI3 in the regulation of sensitivity to neratinib in breast cancer cells overexpressing HER2 and open the possibility of using PADI3 inhibitors to fight resistance to neratinib.

奈拉替尼是一种酪氨酸激酶抑制剂,用于治疗HER2+乳腺肿瘤患者。然而,尽管奈拉替尼具有临床疗效,但也可能产生耐药性。在这里,我们创建了奈拉替尼耐药性细胞模型,以研究这种耐药性的机制。BT474人类HER2+乳腺癌细胞长期暴露于奈拉替尼后,筛选出了几个对药物抗增殖作用具有耐药性的克隆。利用多种技术对这些克隆进行了生物化学和生物学鉴定。这些克隆保留了与亲代细胞相似的 HER2 水平。基因敲除实验表明,奈拉替尼耐药克隆保留了对HER2的致癌依赖性。此外,BT474和耐药克隆的酪氨酸磷酸化状态对奈拉替尼同样敏感。转录组和Western分析表明,肽精氨酸脱氨酶3在研究的三个奈拉替尼耐药克隆中过表达,但在BT474细胞中检测不到。在奈拉替尼耐药克隆中进行的实验表明,减少 PADI3 或抑制其功能可恢复对奈拉替尼抗增殖作用的敏感性。此外,在BT474细胞中过表达FLAG标记的PADI3会引起对奈拉替尼抗增殖作用的耐药性。总之,这些结果揭示了PADI3在调控过表达HER2的乳腺癌细胞对奈拉替尼的敏感性中的作用,并为使用PADI3抑制剂对抗奈拉替尼耐药性提供了可能性。
{"title":"Peptidylarginine deiminase 3 modulates response to neratinib in HER2 positive breast cancer.","authors":"Inés Romero-Pérez, Elena Díaz-Rodríguez, Laura Sánchez-Díaz, Juan Carlos Montero, Atanasio Pandiella","doi":"10.1038/s41389-024-00531-4","DOIUrl":"10.1038/s41389-024-00531-4","url":null,"abstract":"<p><p>Neratinib is a tyrosine kinase inhibitor that is used for the therapy of patients with HER2+ breast tumors. However, despite its clinical benefit, resistance to the drug may arise. Here we have created cellular models of neratinib resistance to investigate the mechanisms underlying such resistance. Chronic neratinib exposure of BT474 human HER2+ breast cancer cells resulted in the selection of several clones resistant to the antiproliferative action of the drug. The clones were characterized biochemically and biologically using a variety of techniques. These clones retained HER2 levels similar to parental cells. Knockdown experiments showed that the neratinib-resistant clones retained oncogenic dependence on HER2. Moreover, the tyrosine phosphorylation status of BT474 and the resistant clones was equally sensitive to neratinib. Transcriptomic and Western analyses showed that peptidylarginine deiminase 3 was overexpressed in the three neratinib-resistant clones studied but was undetectable in BT474 cells. Experiments performed in the neratinib-resistant clones showed that reduction of PADI3 or inhibition of its function restored sensitivity to the antiproliferative action of neratinib. Moreover, overexpression of FLAG-tagged PADI3 in BT474 cells provoked resistance to the antiproliferative action of neratinib. Together, these results uncover a role of PADI3 in the regulation of sensitivity to neratinib in breast cancer cells overexpressing HER2 and open the possibility of using PADI3 inhibitors to fight resistance to neratinib.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"13 1","pages":"30"},"PeriodicalIF":5.9,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Oncogenesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1