Felicià Maviane Macia, Tyrone Possamai, Marie-Annick Dorne, Marie-Céline Lacombe, Eric Duchêne, Didier Merdinoglu, Nemo Peeters, David Rousseau, Sabine Wiedemann-Merdinoglu
{"title":"Phenotyping grapevine resistance to downy mildew: deep learning as a promising tool to assess sporulation and necrosis.","authors":"Felicià Maviane Macia, Tyrone Possamai, Marie-Annick Dorne, Marie-Céline Lacombe, Eric Duchêne, Didier Merdinoglu, Nemo Peeters, David Rousseau, Sabine Wiedemann-Merdinoglu","doi":"10.1186/s13007-024-01220-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Downy mildew is a plant disease that affects all cultivated European grapevine varieties. The disease is caused by the oomycete Plasmopara viticola. The current strategy to control this threat relies on repeated applications of fungicides. The most eco-friendly and sustainable alternative solution would be to use bred-resistant varieties. During breeding programs, some wild Vitis species have been used as resistance sources to introduce resistance loci in Vitis vinifera varieties. To ensure the durability of resistance, resistant varieties are built on combinations of these loci, some of which are unfortunately already overcome by virulent pathogen strains. The development of a high-throughput machine learning phenotyping method is now essential for identifying new resistance loci.</p><p><strong>Results: </strong>Images of grapevine leaf discs infected with P. viticola were annotated with OIV 452-1 values, a standard scale, traditionally used by experts to assess resistance visually. This descriptor takes two variables into account the complete phenotype of the symptom: sporulation and necrosis. This annotated dataset was used to train neural networks. Various encoders were used to incorporate prior knowledge of the scale's ordinality. The best results were obtained with the Swin transformer encoder which achieved an accuracy of 81.7%. Finally, from a biological point of view, the model described the studied trait and identified differences between genotypes in agreement with human observers, with an accuracy of 97% but at a high-throughput 650% faster than that of humans.</p><p><strong>Conclusion: </strong>This work provides a fast, full pipeline for image processing, including machine learning, to describe the symptoms of grapevine leaf discs infected with P. viticola using the OIV 452-1, a two-symptom standard scale that considers sporulation and necrosis. If symptoms are frequently assessed by visual observation, which is time-consuming, low-throughput, tedious, and expert dependent, the method developed sweeps away all these constraints. This method could be extended to other pathosystems studied on leaf discs where disease symptoms are scored with ordinal scales.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"90"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01220-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Downy mildew is a plant disease that affects all cultivated European grapevine varieties. The disease is caused by the oomycete Plasmopara viticola. The current strategy to control this threat relies on repeated applications of fungicides. The most eco-friendly and sustainable alternative solution would be to use bred-resistant varieties. During breeding programs, some wild Vitis species have been used as resistance sources to introduce resistance loci in Vitis vinifera varieties. To ensure the durability of resistance, resistant varieties are built on combinations of these loci, some of which are unfortunately already overcome by virulent pathogen strains. The development of a high-throughput machine learning phenotyping method is now essential for identifying new resistance loci.
Results: Images of grapevine leaf discs infected with P. viticola were annotated with OIV 452-1 values, a standard scale, traditionally used by experts to assess resistance visually. This descriptor takes two variables into account the complete phenotype of the symptom: sporulation and necrosis. This annotated dataset was used to train neural networks. Various encoders were used to incorporate prior knowledge of the scale's ordinality. The best results were obtained with the Swin transformer encoder which achieved an accuracy of 81.7%. Finally, from a biological point of view, the model described the studied trait and identified differences between genotypes in agreement with human observers, with an accuracy of 97% but at a high-throughput 650% faster than that of humans.
Conclusion: This work provides a fast, full pipeline for image processing, including machine learning, to describe the symptoms of grapevine leaf discs infected with P. viticola using the OIV 452-1, a two-symptom standard scale that considers sporulation and necrosis. If symptoms are frequently assessed by visual observation, which is time-consuming, low-throughput, tedious, and expert dependent, the method developed sweeps away all these constraints. This method could be extended to other pathosystems studied on leaf discs where disease symptoms are scored with ordinal scales.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.