Modelling mosquito population suppression based on competition system with strong and weak Allee effect.

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-03-06 DOI:10.3934/mbe.2024231
Chen Liang, Hai-Feng Huo, Hong Xiang
{"title":"Modelling mosquito population suppression based on competition system with strong and weak Allee effect.","authors":"Chen Liang, Hai-Feng Huo, Hong Xiang","doi":"10.3934/mbe.2024231","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquito-borne diseases are threatening half of the world's population. To prevent the spread of malaria, dengue fever, or other mosquito-borne diseases, a new disease control strategy is to reduce or eradicate the wild mosquito population by releasing sterile mosquitoes. To study the effects of sterile insect technique on mosquito populations, we developed a mathematical model of constant release of sterile <i>Aedes aegypti</i> mosquitoes with strong and weak Allee effect and considered interspecific competition with <i>Anopheles</i> mosquitoes. We calculated multiple release thresholds and investigated the dynamical behavior of this model. In order to get closer to reality, an impulsive differential equation model was also introduced to study mosquito suppression dynamics under the strategy of releasing $ c $ sterile male mosquitoes at each interval time $ T $. Finally, the relationship between the releasing amount or the waiting period and the number of days required to suppress mosquitoes was illustrated by numerical simulations.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5227-5249"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024231","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Mosquito-borne diseases are threatening half of the world's population. To prevent the spread of malaria, dengue fever, or other mosquito-borne diseases, a new disease control strategy is to reduce or eradicate the wild mosquito population by releasing sterile mosquitoes. To study the effects of sterile insect technique on mosquito populations, we developed a mathematical model of constant release of sterile Aedes aegypti mosquitoes with strong and weak Allee effect and considered interspecific competition with Anopheles mosquitoes. We calculated multiple release thresholds and investigated the dynamical behavior of this model. In order to get closer to reality, an impulsive differential equation model was also introduced to study mosquito suppression dynamics under the strategy of releasing $ c $ sterile male mosquitoes at each interval time $ T $. Finally, the relationship between the releasing amount or the waiting period and the number of days required to suppress mosquitoes was illustrated by numerical simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强阿利效应和弱阿利效应竞争系统的蚊子种群抑制模型。
蚊子传播的疾病正威胁着全球一半的人口。为防止疟疾、登革热或其他蚊媒疾病的传播,一种新的疾病控制策略是通过释放不育蚊子来减少或消灭野生蚊子数量。为了研究昆虫不育技术对蚊子种群的影响,我们建立了一个具有强阿利效应和弱阿利效应的埃及伊蚊不育恒定释放数学模型,并考虑了与按蚊的种间竞争。我们计算了多个释放阈值,并研究了该模型的动态行为。为了更接近现实,我们还引入了一个脉冲微分方程模型,研究了在每个间隔时间 $ T $ 释放 $ c $ 不育雄蚊策略下的蚊子抑制动力学。最后,通过数值模拟说明了释放量或等待期与抑蚊所需天数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Multiscale modelling of hepatitis B virus at cell level of organization. Global sensitivity analysis and uncertainty quantification for a mathematical model of dry anaerobic digestion in plug-flow reactors. Depression-induced changes in directed functional brain networks: A source-space resting-state EEG study. Mathematical modeling of infectious diseases and the impact of vaccination strategies. Retraction notice to "A novel architecture design for artificial intelligence-assisted culture conservation management system" [Mathematical Biosciences and Engineering 20(6) (2023) 9693-9711].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1