Multiscale distribution entropy analysis of short epileptic EEG signals.

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-04-02 DOI:10.3934/mbe.2024245
Dae Hyeon Kim, Jin-Oh Park, Dae-Young Lee, Young-Seok Choi
{"title":"Multiscale distribution entropy analysis of short epileptic EEG signals.","authors":"Dae Hyeon Kim, Jin-Oh Park, Dae-Young Lee, Young-Seok Choi","doi":"10.3934/mbe.2024245","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an information-theoretic measure for discriminating epileptic patterns in short-term electroencephalogram (EEG) recordings. Considering nonlinearity and nonstationarity in EEG signals, quantifying complexity has been preferred. To decipher abnormal epileptic EEGs, i.e., ictal and interictal EEGs, via short-term EEG recordings, a distribution entropy (DE) is used, motivated by its robustness on the signal length. In addition, to reflect the dynamic complexity inherent in EEGs, a multiscale entropy analysis is incorporated. Here, two multiscale distribution entropy (MDE) methods using the coarse-graining and moving-average procedures are presented. Using two popular epileptic EEG datasets, i.e., the Bonn and the Bern-Barcelona datasets, the performance of the proposed MDEs is verified. Experimental results show that the proposed MDEs are robust to the length of EEGs, thus reflecting complexity over multiple time scales. In addition, the proposed MDEs are consistent irrespective of the selection of short-term EEGs from the entire EEG recording. By evaluating the Man-Whitney U test and classification performance, the proposed MDEs can better discriminate epileptic EEGs than the existing methods. Moreover, the proposed MDE with the moving-average procedure performs marginally better than one with the coarse-graining. The experimental results suggest that the proposed MDEs are applicable to practical seizure detection applications.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5556-5576"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an information-theoretic measure for discriminating epileptic patterns in short-term electroencephalogram (EEG) recordings. Considering nonlinearity and nonstationarity in EEG signals, quantifying complexity has been preferred. To decipher abnormal epileptic EEGs, i.e., ictal and interictal EEGs, via short-term EEG recordings, a distribution entropy (DE) is used, motivated by its robustness on the signal length. In addition, to reflect the dynamic complexity inherent in EEGs, a multiscale entropy analysis is incorporated. Here, two multiscale distribution entropy (MDE) methods using the coarse-graining and moving-average procedures are presented. Using two popular epileptic EEG datasets, i.e., the Bonn and the Bern-Barcelona datasets, the performance of the proposed MDEs is verified. Experimental results show that the proposed MDEs are robust to the length of EEGs, thus reflecting complexity over multiple time scales. In addition, the proposed MDEs are consistent irrespective of the selection of short-term EEGs from the entire EEG recording. By evaluating the Man-Whitney U test and classification performance, the proposed MDEs can better discriminate epileptic EEGs than the existing methods. Moreover, the proposed MDE with the moving-average procedure performs marginally better than one with the coarse-graining. The experimental results suggest that the proposed MDEs are applicable to practical seizure detection applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短程癫痫脑电信号的多尺度分布熵分析。
本文提出了一种信息论测量方法,用于分辨短期脑电图(EEG)记录中的癫痫模式。考虑到脑电信号的非线性和非平稳性,量化复杂性一直是首选。为了通过短期脑电图记录破译异常癫痫脑电图(即发作期和发作间期脑电图),我们使用了分布熵(DE),这是因为它对信号长度具有鲁棒性。此外,为了反映脑电图固有的动态复杂性,还加入了多尺度熵分析。本文介绍了两种使用粗粒度和移动平均程序的多尺度分布熵(MDE)方法。利用两个流行的癫痫脑电图数据集,即波恩数据集和伯尔尼-巴塞罗那数据集,验证了所提出的 MDE 的性能。实验结果表明,提出的 MDE 对 EEG 的长度具有鲁棒性,从而反映了多个时间尺度上的复杂性。此外,无论从整个脑电图记录中选择短期脑电图,所提出的 MDE 都是一致的。通过 Man-Whitney U 检验和分类性能评估,与现有方法相比,所提出的 MDE 能更好地分辨癫痫脑电图。此外,采用移动平均程序的 MDE 比采用粗粒化的 MDE 性能略好。实验结果表明,所提出的 MDE 适用于实际的癫痫发作检测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Multiscale modelling of hepatitis B virus at cell level of organization. Global sensitivity analysis and uncertainty quantification for a mathematical model of dry anaerobic digestion in plug-flow reactors. Depression-induced changes in directed functional brain networks: A source-space resting-state EEG study. Mathematical modeling of infectious diseases and the impact of vaccination strategies. Retraction notice to "A novel architecture design for artificial intelligence-assisted culture conservation management system" [Mathematical Biosciences and Engineering 20(6) (2023) 9693-9711].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1