Classical and advanced isotherms to model the adsorption of drugs, dyes and metals on activated carbonaceous materials: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2024-06-13 DOI:10.1007/s10311-024-01759-7
Issam Mechnou, Sarra Meskini, Esseddik Elqars, Az-Iddin Chham, Miloudi Hlaibi
{"title":"Classical and advanced isotherms to model the adsorption of drugs, dyes and metals on activated carbonaceous materials: a review","authors":"Issam Mechnou,&nbsp;Sarra Meskini,&nbsp;Esseddik Elqars,&nbsp;Az-Iddin Chham,&nbsp;Miloudi Hlaibi","doi":"10.1007/s10311-024-01759-7","DOIUrl":null,"url":null,"abstract":"<div><p>Water contamination is a major health issue that can be addressed by using carbonaceous materials to adsorb and filter pollutants, yet adsorption mechanisms need to be better understood to improve the adsorption efficiency. Here we review the models that are used to study the mechanisms of adsorption of drugs, dyes and metal ions on carbonaceous materials, with emphasis on classical and advanced isotherms. We discuss the fitting frequency, lignocellulosic and fossil fuel-derived adsorbents, biomass composition, activating agents, surface functions, the carbonization temperature, the medium temperature effect and the use of several isotherms to explain the same mechanism. The adsorption capacity can reach up to 2651 mg of contaminant per g of lignocellulosic materials and 1274 mg of contaminant per g of fossil materials. Isotherm validation commonly depends on several parameters. The adsorption on lignocellulosic carbonaceous materials is best described by the Langmuir isotherm. In contrast, adsorption on fossil materials is best described by the Redlich-Peterson isotherm. Advanced and classical isotherms are in good agreement in 44% of reports.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 5","pages":"2375 - 2404"},"PeriodicalIF":15.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01759-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01759-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water contamination is a major health issue that can be addressed by using carbonaceous materials to adsorb and filter pollutants, yet adsorption mechanisms need to be better understood to improve the adsorption efficiency. Here we review the models that are used to study the mechanisms of adsorption of drugs, dyes and metal ions on carbonaceous materials, with emphasis on classical and advanced isotherms. We discuss the fitting frequency, lignocellulosic and fossil fuel-derived adsorbents, biomass composition, activating agents, surface functions, the carbonization temperature, the medium temperature effect and the use of several isotherms to explain the same mechanism. The adsorption capacity can reach up to 2651 mg of contaminant per g of lignocellulosic materials and 1274 mg of contaminant per g of fossil materials. Isotherm validation commonly depends on several parameters. The adsorption on lignocellulosic carbonaceous materials is best described by the Langmuir isotherm. In contrast, adsorption on fossil materials is best described by the Redlich-Peterson isotherm. Advanced and classical isotherms are in good agreement in 44% of reports.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药物、染料和金属在活性炭材料上吸附的经典和先进等温线模型:综述
水污染是一个重大的健康问题,利用碳质材料吸附和过滤污染物可以解决这个问题,但要提高吸附效率,还需要更好地了解吸附机理。在此,我们回顾了用于研究药物、染料和金属离子在碳质材料上吸附机理的模型,重点是经典等温线和高级等温线。我们讨论了拟合频率、木质纤维素和化石燃料衍生吸附剂、生物质成分、活化剂、表面功能、碳化温度、介质温度效应以及使用几种等温线来解释同一机制。每克木质纤维素材料的吸附容量可达 2651 毫克污染物,每克化石材料的吸附容量可达 1274 毫克污染物。等温线的验证通常取决于几个参数。木质纤维素碳质材料上的吸附最适合用 Langmuir 等温线来描述。相比之下,化石材料上的吸附用 Redlich-Peterson 等温线描述最为恰当。在 44% 的报告中,先进的等温线与传统的等温线非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Combined supramolecular solvent preparation and solid extraction Cyanobacteria for environmental, energy and biomedical application: a review Production, characterization, and toxicology of environmentally relevant nanoplastics: a review Microalgae for microplastic removal from water and wastewater: a review Underestimated sequestration of soil organic carbon in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1