{"title":"Functional implications of fumarate-induced cysteine succination","authors":"","doi":"10.1016/j.tibs.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 9","pages":"Pages 775-790"},"PeriodicalIF":11.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968000424001130/pdfft?md5=df3dc6aac16d13e59cc8af993548abc8&pid=1-s2.0-S0968000424001130-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001130","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.