Explaining slow seizure propagation with white matter tractography.

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY Brain Pub Date : 2024-10-03 DOI:10.1093/brain/awae192
Abdullah Azeem, Chifaou Abdallah, Nicolás von Ellenrieder, Charbel El Kosseifi, Birgit Frauscher, Jean Gotman
{"title":"Explaining slow seizure propagation with white matter tractography.","authors":"Abdullah Azeem, Chifaou Abdallah, Nicolás von Ellenrieder, Charbel El Kosseifi, Birgit Frauscher, Jean Gotman","doi":"10.1093/brain/awae192","DOIUrl":null,"url":null,"abstract":"<p><p>Epileptic seizures recorded with stereo-EEG can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and stereo-EEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared with regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-Engel IV). The seizure onset zone was more tract-connected to regions of seizure spread than to non-involved regions (P < 0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared with non-involved regions. In seizure-free patients only, regions of seizure spread were more tract-connected to the seizure onset zone than to other regions of spread (P < 0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract-connected to regions of early spread compared with regions of late spread in seizure-free patients only (P < 0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely to be mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone might be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds might be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure-free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship might eventually provide insight into selecting the correct targets for epilepsy surgery.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae192","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epileptic seizures recorded with stereo-EEG can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and stereo-EEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared with regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-Engel IV). The seizure onset zone was more tract-connected to regions of seizure spread than to non-involved regions (P < 0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared with non-involved regions. In seizure-free patients only, regions of seizure spread were more tract-connected to the seizure onset zone than to other regions of spread (P < 0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract-connected to regions of early spread compared with regions of late spread in seizure-free patients only (P < 0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely to be mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone might be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds might be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure-free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship might eventually provide insight into selecting the correct targets for epilepsy surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用白质束描解释缓慢的癫痫发作传播。
用立体脑电图(SEEG)记录的癫痫发作从一个区域传播到另一个区域可能需要几分之一秒或几秒钟的时间。是什么解释了这种传播模式?我们结合束描和 SEEG 来确定癫痫发作传播与白质结构之间的关系,并描述癫痫发作传播机制。我们将特定患者的时空癫痫发作传播图与人类连接组计划中匹配受试者的扩散成像的牵引图结合起来。发作活动的起始时间由两名经过认证的神经科医生对发作涉及的所有通道逐一进行标记。我们测量了发作起始区、发作扩散区和非参与区之间的兴趣区对之间的道连通性(道数)。我们还研究了与晚期扩散区域相比,癫痫发作起始区与癫痫早期扩散区域之间的道连接程度。比较是在校正距离差异后进行的。我们对 26 名耐药性癫痫患者的 69 次癫痫发作进行了标记;其中 11 人术后无癫痫发作(Engel IA),15 人术后无癫痫发作(Engel IB-IV)。发作开始区与发作扩散区域的连接比与非涉及区域的连接更紧密(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
期刊最新文献
Transient brain structure changes after high phenylalanine exposure in adults with phenylketonuria. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Single-value brain activity scores reflect both severity and risk across the Alzheimer's continuum. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1