α-Ketoglutarate prevents hyperlipidemia-induced fatty liver mitochondrial dysfunction and oxidative stress by activating the AMPK-pgc-1α/Nrf2 pathway

IF 11.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2024-06-13 DOI:10.1016/j.redox.2024.103230
Danyu Cheng , Mo Zhang , Yezi Zheng , Min Wang , Yilin Gao , Xudong Wang , Xuyun Liu , Weiqiang Lv , Xin Zeng , Konstantin N. Belosludtsev , Jiacan Su , Lin Zhao , Jiankang Liu
{"title":"α-Ketoglutarate prevents hyperlipidemia-induced fatty liver mitochondrial dysfunction and oxidative stress by activating the AMPK-pgc-1α/Nrf2 pathway","authors":"Danyu Cheng ,&nbsp;Mo Zhang ,&nbsp;Yezi Zheng ,&nbsp;Min Wang ,&nbsp;Yilin Gao ,&nbsp;Xudong Wang ,&nbsp;Xuyun Liu ,&nbsp;Weiqiang Lv ,&nbsp;Xin Zeng ,&nbsp;Konstantin N. Belosludtsev ,&nbsp;Jiacan Su ,&nbsp;Lin Zhao ,&nbsp;Jiankang Liu","doi":"10.1016/j.redox.2024.103230","DOIUrl":null,"url":null,"abstract":"<div><p>α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"74 ","pages":"Article 103230"},"PeriodicalIF":11.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724002088/pdfft?md5=6ddc7b225e1f457bf9a06d221b1b11fc&pid=1-s2.0-S2213231724002088-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724002088","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-酮戊二酸通过激活AMPK-pgc-1α/Nrf2途径,预防高脂血症诱导的脂肪肝线粒体功能障碍和氧化应激。
α-酮戊二酸(AKG)是三羧酸循环中的一种重要中间体,已被证实可减轻高脂血症引起的血脂异常和内皮损伤。虽然高脂血症是非酒精性脂肪肝的主要诱因,但 AKG 对高脂血症引起的肝脏代谢紊乱的保护作用仍未得到充分探讨。本研究旨在探讨 AKG 对急性高脂血症引起的肝脏脂质代谢紊乱的潜在保护作用和机制。我们的观察结果表明,AKG 能有效缓解 P407 诱导的高脂血症小鼠以及棕榈酸酯损伤的 HepG2 细胞和原代肝细胞的肝脏脂质积累、线粒体功能障碍和氧化还原平衡丧失。机理研究表明,这种预防作用是通过激活 AMPK-PGC-1α/Nrf2 通路介导的。总之,我们的研究结果揭示了 AKG 在改善高脂血症诱导的脂肪肝异常脂质代谢紊乱中的作用和机制,表明 AKG 作为一种内源性线粒体营养素,在解决高脂血症诱导的脂肪肝问题上具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
Fibroblast circSamd4 promotes cardiac fibrosis via activating plasminogen activator inhibitor-1. Zinc overload disrupts SoxR [2Fe–2S] clusters to drive redox-metallic crosstalk via SoxS-ZnuACB in Escherichia coli The electrophilic metabolite of kynurenine, kynurenine-CKA, requires C151 in Keap1 to derepress Nrf2 Ferrostatin-1 protects against early sepsis-induced acute lung injury by suppressing lipid peroxidation–driven NINJ1-mediated DAMP release and neutrophil activation RIPK3-driven phosphorylation of MFN2 orchestrates endoplasmic reticulum-mitochondria interaction and cardiomyocyte stress responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1