Effects of high-intensity interval training combined with dual-site transcranial direct current stimulation on inhibitory control and working memory in healthy adults
Tian Yue , Liang Liu , Michael A. Nitsche , Zhaowei Kong , Ming Zhang , Fengxue Qi
{"title":"Effects of high-intensity interval training combined with dual-site transcranial direct current stimulation on inhibitory control and working memory in healthy adults","authors":"Tian Yue , Liang Liu , Michael A. Nitsche , Zhaowei Kong , Ming Zhang , Fengxue Qi","doi":"10.1016/j.humov.2024.103240","DOIUrl":null,"url":null,"abstract":"<div><p>Transcranial direct current stimulation (tDCS) and high-intensity interval training (HIIT) have been demonstrated to enhance inhibitory control and working memory (WM) performance in healthy adults. However, the potential benefits of combining these two interventions have been rarely explored and remain largely speculative. This study aimed to explore the effects of acute HIIT combined with dual-site tDCS over the dorsolateral prefrontal cortex (DLPFC, F3 and F4) on inhibitory control and WM in healthy young adults. Twenty-five healthy college students (20.5 ± 1.3 years; 11 females) were recruited to complete HIIT + tDCS, HIIT + sham-tDCS, rest + tDCS, and rest + sham-tDCS (CON) sessions in a randomized crossover design. tDCS or sham-tDCS was conducted after completing HIIT or a rest condition of the same duration. The Stroop and 2-back tasks were used to evaluate the influence of this combined intervention on cognitive tasks involving inhibitory control and WM performance in post-trials, respectively. Response times (RTs) of the Stroop task significantly improved in the HIIT + tDCS session compared to the CON session across all conditions (all <em>p</em> values <0.05), in the HIIT + tDCS session compared to the rest + tDCS session in the congruent and neutral conditions (all <em>p</em> values <0.05), in the HIIT + sham-tDCS session compared to the CON session in the congruent and neutral conditions (all <em>p</em> values <0.05), in the HIIT + sham-tDCS session compared to the rest + tDCS session in the congruent condition (<em>p</em> = 0.015). No differences were found between sessions in composite score of RT and accuracy in the Stroop task (all <em>p</em> values >0.05) and in the 2-back task reaction time and accuracy (all <em>p</em> values >0.05). We conclude that acute HIIT combined with tDCS effectively improved inhibitory control but it failed to yield cumulative benefits on inhibitory control and WM in healthy adults. These preliminary findings help to identify beneficial effects of combined interventions on cognitive performance and might guide future research with clinical populations.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000630","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transcranial direct current stimulation (tDCS) and high-intensity interval training (HIIT) have been demonstrated to enhance inhibitory control and working memory (WM) performance in healthy adults. However, the potential benefits of combining these two interventions have been rarely explored and remain largely speculative. This study aimed to explore the effects of acute HIIT combined with dual-site tDCS over the dorsolateral prefrontal cortex (DLPFC, F3 and F4) on inhibitory control and WM in healthy young adults. Twenty-five healthy college students (20.5 ± 1.3 years; 11 females) were recruited to complete HIIT + tDCS, HIIT + sham-tDCS, rest + tDCS, and rest + sham-tDCS (CON) sessions in a randomized crossover design. tDCS or sham-tDCS was conducted after completing HIIT or a rest condition of the same duration. The Stroop and 2-back tasks were used to evaluate the influence of this combined intervention on cognitive tasks involving inhibitory control and WM performance in post-trials, respectively. Response times (RTs) of the Stroop task significantly improved in the HIIT + tDCS session compared to the CON session across all conditions (all p values <0.05), in the HIIT + tDCS session compared to the rest + tDCS session in the congruent and neutral conditions (all p values <0.05), in the HIIT + sham-tDCS session compared to the CON session in the congruent and neutral conditions (all p values <0.05), in the HIIT + sham-tDCS session compared to the rest + tDCS session in the congruent condition (p = 0.015). No differences were found between sessions in composite score of RT and accuracy in the Stroop task (all p values >0.05) and in the 2-back task reaction time and accuracy (all p values >0.05). We conclude that acute HIIT combined with tDCS effectively improved inhibitory control but it failed to yield cumulative benefits on inhibitory control and WM in healthy adults. These preliminary findings help to identify beneficial effects of combined interventions on cognitive performance and might guide future research with clinical populations.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."