Ananda S. Amarasekara , Ambar B. Shrestha , Deping Wang
{"title":"Oxidative coupling of furfural with alcohols to 2-alkyl-3-(2-furyl) acroleins using Li-ion battery waste based LiNiaMnbCocOd/graphite catalyst","authors":"Ananda S. Amarasekara , Ambar B. Shrestha , Deping Wang","doi":"10.1016/j.tgchem.2024.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon number upgrading of bio-furans by coupling with other renewable feedstocks is an attractive approach for producing renewable fuel and polymer feedstocks. In this work, used Li-ion battery waste based low cost catalyst was shown as an alternative to expensive noble metal catalysts for coupling furfural with alcohols to give 2-alkyl-3-(2-furyl) acroleins. The catalyst was prepared by pyrolyzing the black electrode coating from 18650 Li-ion cells in a used laptop battery at 600 °C in air. Highest furfural conversions of 72.6, 83.6, 100.0 and 95.4 % were observed for 1-propanol, 1-butanol, 1-pentanol and 1-hexanol respectively, using 0.6 mmol LiOH/mmol of furfural and using 25 mg/mmol of furfural catalyst loading, 0.345 MPa O<sub>2</sub>, 110 °C for 4.0 h. However, recycling of LiNi<sub>a</sub>Mn<sub>b</sub>Co<sub>c</sub>O<sub>d</sub>/graphite catalyst showed significant loss in catalytic activity in four cycles of reuse. A reaction scheme involving oxidation of alcohols to aldehydes followed by base catalyzed aldol condensation was proposed to explain the coupling to give 2-alkyl-3-(2-furyl) acroleins.</p></div>","PeriodicalId":101215,"journal":{"name":"Tetrahedron Green Chem","volume":"3 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773223124000116/pdfft?md5=fa918238c69993c04698bad0aebe06e7&pid=1-s2.0-S2773223124000116-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Green Chem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773223124000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon number upgrading of bio-furans by coupling with other renewable feedstocks is an attractive approach for producing renewable fuel and polymer feedstocks. In this work, used Li-ion battery waste based low cost catalyst was shown as an alternative to expensive noble metal catalysts for coupling furfural with alcohols to give 2-alkyl-3-(2-furyl) acroleins. The catalyst was prepared by pyrolyzing the black electrode coating from 18650 Li-ion cells in a used laptop battery at 600 °C in air. Highest furfural conversions of 72.6, 83.6, 100.0 and 95.4 % were observed for 1-propanol, 1-butanol, 1-pentanol and 1-hexanol respectively, using 0.6 mmol LiOH/mmol of furfural and using 25 mg/mmol of furfural catalyst loading, 0.345 MPa O2, 110 °C for 4.0 h. However, recycling of LiNiaMnbCocOd/graphite catalyst showed significant loss in catalytic activity in four cycles of reuse. A reaction scheme involving oxidation of alcohols to aldehydes followed by base catalyzed aldol condensation was proposed to explain the coupling to give 2-alkyl-3-(2-furyl) acroleins.