Design and performance analysis of a compact dual-motor underwater vector propulsion system

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-06-14 DOI:10.1016/j.mechmachtheory.2024.105703
Zihao Yu , Liang Yan , Xiaoshan Gao , Jiatong Liu , Suwan Bu , Peiran Zhao , Xinghua He , I-Ming Chen
{"title":"Design and performance analysis of a compact dual-motor underwater vector propulsion system","authors":"Zihao Yu ,&nbsp;Liang Yan ,&nbsp;Xiaoshan Gao ,&nbsp;Jiatong Liu ,&nbsp;Suwan Bu ,&nbsp;Peiran Zhao ,&nbsp;Xinghua He ,&nbsp;I-Ming Chen","doi":"10.1016/j.mechmachtheory.2024.105703","DOIUrl":null,"url":null,"abstract":"<div><p>Vector propulsion systems enhance the limited three-dimensional motion capabilities of conventional systems at low speeds. However, their requirement for multiple prime movers increases the underwater robot’s power capacity, impacts its size and mass and compromises long endurance capabilities. To solve this problem, a compact dual-motor underwater vector propulsion system is proposed in this paper. It employs a nozzle, adjustable in a two-dimensional plane, to produce an adjusting force, and a propeller, perpendicular to this plane, for main thrust, achieving three-dimensional motion. The innovation lies in a dual-shaft motor with each shaft featuring a one-way bearing. The synchronized direction of rotation of the two one-way bearings is opposite. This configuration enables the motor to drive the propeller during forward rotation and the nozzle during reverse rotation, achieving a two-in-one drive motor and reducing prime movers. Additionally, using nozzles for attitude regulation overcomes the limitation of conventional propulsion systems. An analytical model defines mechanical output characteristics. Computational fluid dynamics analyze hydrodynamic characteristics. The prototype’s underwater experiments confirm its ability to generate main thrust and a two-dimensional planar adjusting force, enabling three-dimensional motion.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001307","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vector propulsion systems enhance the limited three-dimensional motion capabilities of conventional systems at low speeds. However, their requirement for multiple prime movers increases the underwater robot’s power capacity, impacts its size and mass and compromises long endurance capabilities. To solve this problem, a compact dual-motor underwater vector propulsion system is proposed in this paper. It employs a nozzle, adjustable in a two-dimensional plane, to produce an adjusting force, and a propeller, perpendicular to this plane, for main thrust, achieving three-dimensional motion. The innovation lies in a dual-shaft motor with each shaft featuring a one-way bearing. The synchronized direction of rotation of the two one-way bearings is opposite. This configuration enables the motor to drive the propeller during forward rotation and the nozzle during reverse rotation, achieving a two-in-one drive motor and reducing prime movers. Additionally, using nozzles for attitude regulation overcomes the limitation of conventional propulsion systems. An analytical model defines mechanical output characteristics. Computational fluid dynamics analyze hydrodynamic characteristics. The prototype’s underwater experiments confirm its ability to generate main thrust and a two-dimensional planar adjusting force, enabling three-dimensional motion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紧凑型双电机水下矢量推进系统的设计与性能分析
矢量推进系统提高了传统系统在低速时有限的三维运动能力。然而,矢量推进系统对多个原动机的要求增加了水下机器人的动力容量,影响了其体积和质量,并损害了其长续航能力。为解决这一问题,本文提出了一种紧凑型双电机水下矢量推进系统。该系统采用一个可在二维平面内调节的喷嘴产生调节力,一个垂直于该平面的螺旋桨产生主推力,从而实现三维运动。创新之处在于双轴电机,每根轴都有一个单向轴承。两个单向轴承的同步旋转方向相反。这种配置使电机在正向旋转时驱动螺旋桨,在反向旋转时驱动喷嘴,实现了二合一驱动电机,减少了原动机。此外,利用喷嘴进行姿态调节克服了传统推进系统的局限性。分析模型定义了机械输出特性。计算流体动力学分析了流体动力学特性。原型机的水下实验证实,它能够产生主推力和二维平面调节力,从而实现三维运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Optimizing natural frequencies in compliant mechanisms through geometric scaling Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces Oriblock: The origami-blocks based on hinged dissection Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1