Oriblock: The origami-blocks based on hinged dissection

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-10-30 DOI:10.1016/j.mechmachtheory.2024.105826
Guanglu Jia , Bing Li , Jian S. Dai
{"title":"Oriblock: The origami-blocks based on hinged dissection","authors":"Guanglu Jia ,&nbsp;Bing Li ,&nbsp;Jian S. Dai","doi":"10.1016/j.mechmachtheory.2024.105826","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional origami, a well-known art of paper-folding, does not account for material thickness. Subsequently, several thickness-accommodation techniques have been developed, considering the non-negligible thickness of materials, which enables the application of origami to a wide range of mechanisms. Although these techniques prevent self-intersections and preserve kinematics after accommodating panel thickness, they are limited by their reliance on initial zero-thickness origami patterns in two dimensions. To address this issue, this study proposes a novel technique, the volume-accommodation technique in three-dimensional space, which allocates non-coplanar origami creases based on solid geometry to allow a greater variety of shape-changing motions. Typical solid geometries, such as a pyramid and a prism, are selected as examples to demonstrate the design procedures. Closure equations of the obtained oriblock are used to analyze the kinematic properties. Additionally, Bennett and Myard Linkages are derived from oriblocks based on their kinematic equivalence to strengthen their connections. As a result, this new type of origami can offer a variety of mechanisms for designers and facilitate potential applications in origami-inspired metamaterials and robotics.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105826"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002532","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional origami, a well-known art of paper-folding, does not account for material thickness. Subsequently, several thickness-accommodation techniques have been developed, considering the non-negligible thickness of materials, which enables the application of origami to a wide range of mechanisms. Although these techniques prevent self-intersections and preserve kinematics after accommodating panel thickness, they are limited by their reliance on initial zero-thickness origami patterns in two dimensions. To address this issue, this study proposes a novel technique, the volume-accommodation technique in three-dimensional space, which allocates non-coplanar origami creases based on solid geometry to allow a greater variety of shape-changing motions. Typical solid geometries, such as a pyramid and a prism, are selected as examples to demonstrate the design procedures. Closure equations of the obtained oriblock are used to analyze the kinematic properties. Additionally, Bennett and Myard Linkages are derived from oriblocks based on their kinematic equivalence to strengthen their connections. As a result, this new type of origami can offer a variety of mechanisms for designers and facilitate potential applications in origami-inspired metamaterials and robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oriblock:基于铰链解剖的折纸块
传统折纸是一种著名的折纸艺术,但它并不考虑材料的厚度。后来,考虑到材料的厚度不可忽略,人们开发了几种厚度适应技术,从而使折纸能够应用于多种机械装置。虽然这些技术在适应面板厚度后可以防止自相交并保持运动学特性,但由于它们依赖于二维的初始零厚度折纸图案,因此受到了限制。为解决这一问题,本研究提出了一种新技术--三维空间体积容纳技术,该技术根据实体几何形状分配非共面折纸折痕,从而允许更多的形状变化运动。我们选择了典型的实体几何图形,如金字塔和棱柱,作为演示设计程序的示例。获得的oriblock 的闭合方程用于分析其运动特性。此外,还根据运动学等效性,从口部模块推导出 Bennett 和 Myard 连接器,以加强它们之间的连接。因此,这种新型折纸可以为设计者提供多种机制,并促进折纸启发的超材料和机器人技术的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
A methodology for investigating the influence of hydrodynamic effects in gerotor type positive displacement machines Two PRBMs of Euler spiral segments and their chained models for analyzing general curved beams in compliant mechanisms Human–Machine coupled modeling of mandibular musculoskeletal multibody system and its application in the designation of mandibular movement function trainer Multi-objective optimization design method for the dimensions and control parameters of curling hexapod robot based on application performance Bionic concept and synthesis methods of the biomimetic robot joint mechanism for accurately reproducing the motion pattern of the human knee joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1