A review on H2 sensors based on FET

IF 1.2 4区 化学 Q4 CHEMISTRY, ANALYTICAL Chinese Journal of Analytical Chemistry Pub Date : 2024-06-01 DOI:10.1016/j.cjac.2024.100401
Guochao Yan, Siguo Xiao
{"title":"A review on H2 sensors based on FET","authors":"Guochao Yan,&nbsp;Siguo Xiao","doi":"10.1016/j.cjac.2024.100401","DOIUrl":null,"url":null,"abstract":"<div><p>Highly selective, sensitive, and fast hydrogen sensing technology is becoming increasingly important in the processes of production, transportation, and usage of hydrogen energy. Field-effect transistor (FET) is the basic element of modern IC. When serving as a gas sensor, FET poses advantages of small size, high sensitivity, and low power consumption. This article reviews the latest developments in FET hydrogen sensors based on channel materials from traditional silicon, III-V compound semiconductors to novel channel materials carbon nanotubes, graphene, and two-dimensional black phosphorus. Firstly, the structure of FET sensors was investigated. Then the sensitive materials severing as gate were reviewed and efforts to improve the performance was summarized. Then, we discuss the sensitive materials that are currently available, with a focus on the interaction mechanisms between hydrogen and the sensitive materials. Lastly, methods to enhance sensor performance by modifying the physical and chemical properties of the sensitive materials are presented. Finally, the article provides an outlook on the future development of FET type hydrogen gas sensing.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 6","pages":"Article 100401"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187220402400046X/pdfft?md5=8d54383c5151d78b666045c35bb107c7&pid=1-s2.0-S187220402400046X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187220402400046X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly selective, sensitive, and fast hydrogen sensing technology is becoming increasingly important in the processes of production, transportation, and usage of hydrogen energy. Field-effect transistor (FET) is the basic element of modern IC. When serving as a gas sensor, FET poses advantages of small size, high sensitivity, and low power consumption. This article reviews the latest developments in FET hydrogen sensors based on channel materials from traditional silicon, III-V compound semiconductors to novel channel materials carbon nanotubes, graphene, and two-dimensional black phosphorus. Firstly, the structure of FET sensors was investigated. Then the sensitive materials severing as gate were reviewed and efforts to improve the performance was summarized. Then, we discuss the sensitive materials that are currently available, with a focus on the interaction mechanisms between hydrogen and the sensitive materials. Lastly, methods to enhance sensor performance by modifying the physical and chemical properties of the sensitive materials are presented. Finally, the article provides an outlook on the future development of FET type hydrogen gas sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于场效应晶体管的 H2 传感器综述
在氢能源的生产、运输和使用过程中,高选择性、高灵敏度和快速的氢传感技术正变得越来越重要。场效应晶体管(FET)是现代集成电路的基本元件。在用作气体传感器时,场效应晶体管具有体积小、灵敏度高和功耗低的优点。本文综述了场效应晶体管氢气传感器的最新发展,其沟道材料从传统的硅、III-V 族化合物半导体到新型沟道材料碳纳米管、石墨烯和二维黑磷。首先,研究了 FET 传感器的结构。然后,回顾了用作栅极的敏感材料,并总结了为提高性能所做的努力。然后,我们讨论了目前可用的敏感材料,重点是氢与敏感材料之间的相互作用机制。最后,介绍了通过改变敏感材料的物理和化学特性来提高传感器性能的方法。最后,文章对 FET 型氢气传感的未来发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
25.00%
发文量
17223
审稿时长
35 days
期刊介绍: Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.
期刊最新文献
Determination of microplastic release from disposable plastic containers in Isfahan Renal protective effect of Isaria felina mycelium powder on diet and STZ-induced diabetes mice and the identification of major chemical constituents Determination of tetracycline by FRET fluorescence between chenpi carbon quantum dots and copper nanoparticles Numerical simulation of droplet formation in a Co-flow microchannel capillary device Jiawei Wumei Wan alleviates renal fibrosis in diabetic nephropathy mice by regulating the PI3K/AKT/mTOR signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1