Simulation of 2D ReS2/WSe2 based complementary field-effect transistors towards 1 nm technology node

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2024-06-14 DOI:10.1016/j.mee.2024.112225
Chi Zhang, Enlong Li, Hongmiao Zhou, Chenhao Xu, Wenwu Li
{"title":"Simulation of 2D ReS2/WSe2 based complementary field-effect transistors towards 1 nm technology node","authors":"Chi Zhang,&nbsp;Enlong Li,&nbsp;Hongmiao Zhou,&nbsp;Chenhao Xu,&nbsp;Wenwu Li","doi":"10.1016/j.mee.2024.112225","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced Integrated Circuit technology demands high-performance channel materials and innovative device architectures to sustain the scaling of field-effect transistors. In this study, we simulate the electrical performance of rhenium disulfide and tungsten diselenide nanosheet FETs (NSFETs) with gate lengths ranging from 12 nm to 8 nm using Technology Computer-Aided Design method. The simulated high performance including 393 μA/μm on-state current and over 10<sup>5</sup> on/off ratio can meet the criteria for integrated circuit applications in the 1 nm technology node. Complementary FET (CFET) simulations are conducted through the vertical stacking of ReS<sub>2</sub> and WSe<sub>2</sub> NSFETs, exhibiting a small parasitic capacitance of 1.0 fF/μm, and notable noise margin (&gt;235 mV) at different process corners. The construction and performance simulation of Static Random-Access Memory (SRAM) is realized through CFET interconnection, involving the calculation of read current and read/write noise margin. This research offers a forward-looking analysis of performance metrics for future 2D materials-based NSFETs, CFETs, and SRAMs.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000947","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced Integrated Circuit technology demands high-performance channel materials and innovative device architectures to sustain the scaling of field-effect transistors. In this study, we simulate the electrical performance of rhenium disulfide and tungsten diselenide nanosheet FETs (NSFETs) with gate lengths ranging from 12 nm to 8 nm using Technology Computer-Aided Design method. The simulated high performance including 393 μA/μm on-state current and over 105 on/off ratio can meet the criteria for integrated circuit applications in the 1 nm technology node. Complementary FET (CFET) simulations are conducted through the vertical stacking of ReS2 and WSe2 NSFETs, exhibiting a small parasitic capacitance of 1.0 fF/μm, and notable noise margin (>235 mV) at different process corners. The construction and performance simulation of Static Random-Access Memory (SRAM) is realized through CFET interconnection, involving the calculation of read current and read/write noise margin. This research offers a forward-looking analysis of performance metrics for future 2D materials-based NSFETs, CFETs, and SRAMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟基于二维 ReS2/WSe2 的互补场效应晶体管实现 1 纳米技术节点
先进的集成电路技术需要高性能的沟道材料和创新的器件结构来维持场效应晶体管的规模。在本研究中,我们利用技术计算机辅助设计方法模拟了栅极长度从 12 纳米到 8 纳米不等的二硫化铼和二硒化钨纳米片场效应晶体管(NSFET)的电气性能。模拟的高性能(包括 393 μA/μm 导通电流和超过 105 的导通/截止比)符合 1 纳米技术节点集成电路应用的标准。通过垂直堆叠 ReS2 和 WSe2 NSFET,进行了互补场效应晶体管(CFET)仿真,显示出 1.0 fF/μm 的较小寄生电容和不同工艺角的显著噪声余量(>235 mV)。通过 CFET 互连实现了静态随机存取存储器 (SRAM) 的构建和性能模拟,其中涉及读取电流和读/写噪声裕度的计算。这项研究为未来基于二维材料的 NSFET、CFET 和 SRAM 的性能指标提供了前瞻性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Editorial Board High density nanofluidic channels by self-sealing for metallic nanoparticles detection Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1