{"title":"Residual Neural Network for Direction-of-Arrival Estimation of Multiple Targets in Low SNR","authors":"Yanhua Qin","doi":"10.1049/2024/4599954","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, a novel direction-of-arrival (DOA) estimation method is proposed for linear arrays on the basis of residual neural network (ResNet). The real parts, imaginary parts, and phase entries of the spatial covariance matrix from the on-grid angles are used as the input of ResNet for training, and the angular directions formulated as a multilabel classification task are predicted using the sample covariance matrix from the off-grid angles during the testing phase. ResNet demonstrates robustness in the scenarios on a fixed number of signals and a mixed number of signals. Simulation results show that ResNet can achieve significant performance in DOA estimation compared to multiple signal classification, estimation of signal parameters via rotation invariance techniques, convolutional neural network (CNN), and deep complex-valued CNN in low signal-to-noise ratio.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/4599954","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/4599954","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel direction-of-arrival (DOA) estimation method is proposed for linear arrays on the basis of residual neural network (ResNet). The real parts, imaginary parts, and phase entries of the spatial covariance matrix from the on-grid angles are used as the input of ResNet for training, and the angular directions formulated as a multilabel classification task are predicted using the sample covariance matrix from the off-grid angles during the testing phase. ResNet demonstrates robustness in the scenarios on a fixed number of signals and a mixed number of signals. Simulation results show that ResNet can achieve significant performance in DOA estimation compared to multiple signal classification, estimation of signal parameters via rotation invariance techniques, convolutional neural network (CNN), and deep complex-valued CNN in low signal-to-noise ratio.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf