A Unique Wide-Spacing Fence-Type Superstructure for Robust High-Voltage O3-Type Sodium Layered Cathode

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-06-15 DOI:10.1002/anie.202404330
Qianjiang Mao, Jicheng Zhang, Deniz Wong, Wen Yin, Ruoyu Wang, Tianran Zhang, Xiangfeng Liu
{"title":"A Unique Wide-Spacing Fence-Type Superstructure for Robust High-Voltage O3-Type Sodium Layered Cathode","authors":"Qianjiang Mao,&nbsp;Jicheng Zhang,&nbsp;Deniz Wong,&nbsp;Wen Yin,&nbsp;Ruoyu Wang,&nbsp;Tianran Zhang,&nbsp;Xiangfeng Liu","doi":"10.1002/anie.202404330","DOIUrl":null,"url":null,"abstract":"<p>Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2<i>a</i>×3<i>a</i> type supercell) into O3-type layered cathode material Na<sub>0.9</sub>Li<sub>0.1</sub>Ni<sub>0.3</sub>Mn<sub>0.3</sub>Ti<sub>0.3</sub>O<sub>2</sub> and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg<sup>−1</sup>, a high rate capability (112.8 mAh g<sup>−1</sup> at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g<sup>−1</sup> at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202404330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg−1, a high rate capability (112.8 mAh g−1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g−1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于坚固的 O3 型高压钠层状阴极的独特宽间距栅栏式上层结构。
提高层状氧化物正极材料的能量密度对于实现高性能钠离子电池和促进其商业应用具有重要意义。高电压下的晶格氧氧化还原通常可实现高容量和高能量密度。但不可逆氧释放导致的结构退化、严重的电压衰减以及由此产生的循环性能低下严重限制了其实际应用。在此,我们在 O3 型层状阴极材料 Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 中引入了一种新型栅栏式上层结构(2a × 3a 型超级电池),并在 4.4 V 的高电压下实现了稳定的循环性能。由于栅栏型上层结构具有较宽的 d 间距,因此能有效抑制高电压下锂离子面外迁移和过渡金属面内迁移产生的空位簇的形成,从而大大减少了晶格氧的不可逆释放,极大地稳定了晶体结构。该阴极具有 545 Wh kg-1 的高能量密度、高速率能力(5℃ 时 112.8 mAh g-1)和高循环稳定性(1℃ 时初始容量高达 148.6 mAh g-1,循环 200 次后达到 85.8%),同时电压衰减可忽略不计(循环 200 次后达到 98.5%)。这种策略为设计稳定的纳离子电池高电压层状阴极材料提供了明显的上层结构间距效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO2 Photoreduction. Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Fully sp2 Carbon-Conjugated Covalent Organic Frameworks with Multiple Active Sites for Advanced Lithium-Ion Battery Cathodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1