Qiong Zhao, Lu Chen, Xin Zhang, Hua Yang, Yi Li, Ping Li
{"title":"β-elemene promotes microglial M2-like polarization against ischemic stroke via AKT/mTOR signaling axis-mediated autophagy.","authors":"Qiong Zhao, Lu Chen, Xin Zhang, Hua Yang, Yi Li, Ping Li","doi":"10.1186/s13020-024-00946-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resident microglia- and peripheric macrophage-mediated neuroinflammation plays a predominant role in the occurrence and development of ischemic stroke. Microglia undergo polarization to M1/M2-like phenotype under stress stimulation, which mediates intracellular inflammatory response. β-elemene is a natural sesquiterpene and possesses potent anti-inflammatory activity. This study aimed to investigate the anti-inflammatory efficacy and mechanism of β-elemene in ischemic stroke from the perspective of balancing microglia M1/M2-like polarization.</p><p><strong>Methods: </strong>The middle cerebral artery occlusion (MCAO) model and photothrombotic stroke model were established to explore the regulation effect of β-elemene on the cerebral ischemic injury. The LPS and IFN-γ stimulated BV-2 cells were used to demonstrate the anti-inflammatory effects and potential mechanism of β-elemene regulating M1/M2-like polarization in vitro.</p><p><strong>Results: </strong>In C57BL/6 J mice subjected to MCAO model and photothrombotic stroke model, β-elemene attenuated neurological deficit, reduced the infarction volume and neuroinflammation, thus improving ischemic stroke injury. β-elemene promoted the phenotype transformation of microglia from M1-like to M2-like, which prevented neurons from oxygen and glucose deprivation/reoxygenation (OGD/R) injury by inhibiting inflammatory factor release, thereby reducing neuronal apoptosis. Mechanically, β-elemene prevented the activation of TLR4/NF-κΒ and MAPK signaling pathway and increased AKT/mTOR mediated-autophagy, thereby promoting M2-like polarization of microglia.</p><p><strong>Conclusions: </strong>These results indicated that β-elemene improved cerebral ischemic injury and promoted the transformation of microglia phenotype from M1-like to M2-like, at least in part, through AKT/mTOR-mediated autophagy. This study demonstrated that β-elemene might serve as a promising drug for alleviating ischemic stroke injury.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"19 1","pages":"86"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-024-00946-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Resident microglia- and peripheric macrophage-mediated neuroinflammation plays a predominant role in the occurrence and development of ischemic stroke. Microglia undergo polarization to M1/M2-like phenotype under stress stimulation, which mediates intracellular inflammatory response. β-elemene is a natural sesquiterpene and possesses potent anti-inflammatory activity. This study aimed to investigate the anti-inflammatory efficacy and mechanism of β-elemene in ischemic stroke from the perspective of balancing microglia M1/M2-like polarization.
Methods: The middle cerebral artery occlusion (MCAO) model and photothrombotic stroke model were established to explore the regulation effect of β-elemene on the cerebral ischemic injury. The LPS and IFN-γ stimulated BV-2 cells were used to demonstrate the anti-inflammatory effects and potential mechanism of β-elemene regulating M1/M2-like polarization in vitro.
Results: In C57BL/6 J mice subjected to MCAO model and photothrombotic stroke model, β-elemene attenuated neurological deficit, reduced the infarction volume and neuroinflammation, thus improving ischemic stroke injury. β-elemene promoted the phenotype transformation of microglia from M1-like to M2-like, which prevented neurons from oxygen and glucose deprivation/reoxygenation (OGD/R) injury by inhibiting inflammatory factor release, thereby reducing neuronal apoptosis. Mechanically, β-elemene prevented the activation of TLR4/NF-κΒ and MAPK signaling pathway and increased AKT/mTOR mediated-autophagy, thereby promoting M2-like polarization of microglia.
Conclusions: These results indicated that β-elemene improved cerebral ischemic injury and promoted the transformation of microglia phenotype from M1-like to M2-like, at least in part, through AKT/mTOR-mediated autophagy. This study demonstrated that β-elemene might serve as a promising drug for alleviating ischemic stroke injury.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.