Influence of sedimentary structure and pore-size distribution on upscaling permeability and flow enhancement due to liquid boundary slip: A pore-scale computational study
{"title":"Influence of sedimentary structure and pore-size distribution on upscaling permeability and flow enhancement due to liquid boundary slip: A pore-scale computational study","authors":"ATM Shahidul Huqe Muzemder, Kuldeep Singh","doi":"10.1016/j.advwatres.2024.104752","DOIUrl":null,"url":null,"abstract":"<div><p>Low-permeability sedimentary formations, such as tight sandstones, exhibit fluid flow and transport phenomena distinct from those in conventional porous systems due to the dominance of micro- to nanometer-sized pores and variable amounts of boundary slip. The widely used traditional no-slip boundary condition often fails to accurately describe fluid behavior in these formations. A knowledge gap exists in understanding how liquid slip influences fluid dynamics in complex, heterogeneous sedimentary structures, as previous studies have primarily focused on simplified, homogeneous pore geometries. In this study, we investigated the impact of boundary slip on low-Reynolds number fluid dynamics within synthetically designed two-dimensional graded and random pore networks with varying pore-size distributions to account for heterogeneity. Our results showed that velocity variance increased with increasing heterogeneity, following a power-law relationship. The power-law exponents decreased with boundary slip, quantifying how boundary slip mitigated the impact of heterogeneity on velocity variance. We developed a theoretical model to predict asymptotic flow enhancement and derived constitutive relations to estimate the coefficient <em>C</em> and maximum flow enhancement (Δ<em>E</em>) based on the pore-to-grain size ratio and porosity. Energy dissipation increased with both heterogeneity and boundary slip, which we identified as the primary mechanism contributing to asymptotic flow enhancement. This relationship was illustrated by a 1:1 linear correlation between maximum energy dissipation and maximum flow enhancement, regardless of heterogeneity, indicating that energy dissipation due to boundary slip entirely controls the emerging fluid dynamics. The presented theoretical model and constitutive equations offer practical applications for optimizing fluid dynamics in heterogeneous formations.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104752"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824001398/pdfft?md5=4cdc947a6a273959ca628fe62c69361c&pid=1-s2.0-S0309170824001398-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001398","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Low-permeability sedimentary formations, such as tight sandstones, exhibit fluid flow and transport phenomena distinct from those in conventional porous systems due to the dominance of micro- to nanometer-sized pores and variable amounts of boundary slip. The widely used traditional no-slip boundary condition often fails to accurately describe fluid behavior in these formations. A knowledge gap exists in understanding how liquid slip influences fluid dynamics in complex, heterogeneous sedimentary structures, as previous studies have primarily focused on simplified, homogeneous pore geometries. In this study, we investigated the impact of boundary slip on low-Reynolds number fluid dynamics within synthetically designed two-dimensional graded and random pore networks with varying pore-size distributions to account for heterogeneity. Our results showed that velocity variance increased with increasing heterogeneity, following a power-law relationship. The power-law exponents decreased with boundary slip, quantifying how boundary slip mitigated the impact of heterogeneity on velocity variance. We developed a theoretical model to predict asymptotic flow enhancement and derived constitutive relations to estimate the coefficient C and maximum flow enhancement (ΔE) based on the pore-to-grain size ratio and porosity. Energy dissipation increased with both heterogeneity and boundary slip, which we identified as the primary mechanism contributing to asymptotic flow enhancement. This relationship was illustrated by a 1:1 linear correlation between maximum energy dissipation and maximum flow enhancement, regardless of heterogeneity, indicating that energy dissipation due to boundary slip entirely controls the emerging fluid dynamics. The presented theoretical model and constitutive equations offer practical applications for optimizing fluid dynamics in heterogeneous formations.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes