Exploring mechanisms of mupirocin resistance and hyper-resistance.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Society transactions Pub Date : 2024-06-26 DOI:10.1042/BST20230581
Igor Zivkovic, Ita Gruic-Sovulj
{"title":"Exploring mechanisms of mupirocin resistance and hyper-resistance.","authors":"Igor Zivkovic, Ita Gruic-Sovulj","doi":"10.1042/BST20230581","DOIUrl":null,"url":null,"abstract":"<p><p>Mupirocin is a broad-spectrum antibiotic that acts predominantly against Gram-positive bacteria. It is produced by Pseudomonas fluorescens NCIMB 10586 and has been clinically used to treat primary and secondary skin infections and to eradicate nasal colonisation of methicillin-resistant Staphylococcus aureus strains. Mupirocin inhibits protein synthesis by blocking the active site of isoleucyl-tRNA synthetase (IleRS), which prevents the enzyme from binding isoleucine and ATP for Ile-tRNAIle synthesis. Two types of IleRS are found in bacteria - while IleRS1 is susceptible to mupirocin inhibition, IleRS2 provides resistance to cells. These two types belong to distinct evolutionary clades which likely emerged from an early gene duplication in bacteria. Resistance in IleRS2 is based on the loss of interactions that govern mupirocin binding to IleRS1, such as hydrogen bonding to the carboxylate moiety of mupirocin. IleRS2 enzymes with Ki in the millimolar range have recently been discovered. These hyper-resistant IleRS2 variants surprisingly have a non-canonical version of the catalytic motif, which serves as a signature motif of class I aminoacyl-tRNA synthetases to which IleRS belongs. The non-canonical motif, in which the 1st and 3rd positions are swapped, is key for hyper-resistance and can be accommodated without abolishing enzyme activity in IleRS2 but not in IleRS1. Clinical use of mupirocin led to the emergence of resistance in S. aureus. Low-level resistance arises by mutations of the housekeeping IleRS1, while high-level resistance develops by the acquisition of the resistant IleRS2 on a plasmid. There is no evidence that hyper-resistant variants have been found in clinical isolates.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20230581","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mupirocin is a broad-spectrum antibiotic that acts predominantly against Gram-positive bacteria. It is produced by Pseudomonas fluorescens NCIMB 10586 and has been clinically used to treat primary and secondary skin infections and to eradicate nasal colonisation of methicillin-resistant Staphylococcus aureus strains. Mupirocin inhibits protein synthesis by blocking the active site of isoleucyl-tRNA synthetase (IleRS), which prevents the enzyme from binding isoleucine and ATP for Ile-tRNAIle synthesis. Two types of IleRS are found in bacteria - while IleRS1 is susceptible to mupirocin inhibition, IleRS2 provides resistance to cells. These two types belong to distinct evolutionary clades which likely emerged from an early gene duplication in bacteria. Resistance in IleRS2 is based on the loss of interactions that govern mupirocin binding to IleRS1, such as hydrogen bonding to the carboxylate moiety of mupirocin. IleRS2 enzymes with Ki in the millimolar range have recently been discovered. These hyper-resistant IleRS2 variants surprisingly have a non-canonical version of the catalytic motif, which serves as a signature motif of class I aminoacyl-tRNA synthetases to which IleRS belongs. The non-canonical motif, in which the 1st and 3rd positions are swapped, is key for hyper-resistance and can be accommodated without abolishing enzyme activity in IleRS2 but not in IleRS1. Clinical use of mupirocin led to the emergence of resistance in S. aureus. Low-level resistance arises by mutations of the housekeeping IleRS1, while high-level resistance develops by the acquisition of the resistant IleRS2 on a plasmid. There is no evidence that hyper-resistant variants have been found in clinical isolates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索莫匹罗星抗药性和超抗药性的机制。
莫匹罗星是一种广谱抗生素,主要针对革兰氏阳性菌。它由荧光假单胞菌 NCIMB 10586 产生,临床上用于治疗原发性和继发性皮肤感染,以及根除耐甲氧西林金黄色葡萄球菌菌株的鼻腔定植。莫匹罗星通过阻断异亮氨酰-tRNA 合成酶(IleRS)的活性位点,阻止该酶结合异亮氨酸和 ATP 进行 Ile-tRNAIle 合成,从而抑制蛋白质合成。细菌中有两种类型的 IleRS:IleRS1 易受莫匹罗星抑制,而 IleRS2 对细胞具有抗性。这两种类型属于不同的进化支系,很可能是细菌中早期基因复制产生的。IleRS2 的抗性是基于失去了莫匹罗星与 IleRS1 结合的相互作用,例如与莫匹罗星羧基的氢键结合。最近发现了 Ki 在毫摩尔范围内的 IleRS2 酶。这些抗性超强的 IleRS2 变体令人惊讶地具有非规范版本的催化基团,该基团是 IleRS 所属的 I 类氨基酰-tRNA 合成酶的标志性基团。非规范基团的第 1 位和第 3 位对调,是产生超抗性的关键所在,IleRS2 可以在不影响酶活性的情况下适应这种非规范基团,而 IleRS1 则不行。莫匹罗星的临床使用导致了金黄色葡萄球菌耐药性的出现。低水平的耐药性是由看家的 IleRS1 基因突变产生的,而高水平的耐药性则是由质粒上的耐药 IleRS2 基因产生的。没有证据表明在临床分离株中发现了超耐药性变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
期刊最新文献
Histone H3 mutations and their impact on genome stability maintenance. How does CHD4 slide nucleosomes? Progress towards understanding risk factor mechanisms in the development of autism spectrum disorders. Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1