Carla Greco, Dale T. Andersen, Marian L. Yallop, Gary Barker, Anne D. Jungblut
{"title":"Genome-resolved metagenomics reveals diverse taxa and metabolic complexity in Antarctic lake microbial structures","authors":"Carla Greco, Dale T. Andersen, Marian L. Yallop, Gary Barker, Anne D. Jungblut","doi":"10.1111/1462-2920.16663","DOIUrl":null,"url":null,"abstract":"<p>Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG <i>Microcoleus</i>, while the pinnacle-shaped structures have a higher abundance of <i>Elainellacea</i> MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing <i>Nitrospiracea</i> and <i>amoA</i> genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16663","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens