Genome-resolved metagenomics reveals diverse taxa and metabolic complexity in Antarctic lake microbial structures

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2024-06-16 DOI:10.1111/1462-2920.16663
Carla Greco, Dale T. Andersen, Marian L. Yallop, Gary Barker, Anne D. Jungblut
{"title":"Genome-resolved metagenomics reveals diverse taxa and metabolic complexity in Antarctic lake microbial structures","authors":"Carla Greco,&nbsp;Dale T. Andersen,&nbsp;Marian L. Yallop,&nbsp;Gary Barker,&nbsp;Anne D. Jungblut","doi":"10.1111/1462-2920.16663","DOIUrl":null,"url":null,"abstract":"<p>Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG <i>Microcoleus</i>, while the pinnacle-shaped structures have a higher abundance of <i>Elainellacea</i> MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing <i>Nitrospiracea</i> and <i>amoA</i> genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16663","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组分辨元基因组学揭示了南极湖泊微生物结构的分类群和代谢复杂性。
南极洲的翁特湖(Lake Untersee)是一个常年被冰雪覆盖的湖泊,湖中有独特的未被岩石化的微生物结构。我们利用元基因组学评估了这些尖顶和锥形微生物结构中色素上层和沉积物丰富的深层的群落结构及其代谢潜力。这些微生物结构中栖息着不同的群落。锥形结构的上层有较多的蓝藻 MAG Microcoleus,而尖顶形结构则有较多的 Elainellacea MAG。这表明蓝藻影响了藻垫的形态。我们发现,垫层上层和下层的群落组成及其代谢潜力形成了鲜明对比。垫层上层接受光照,光合作用途径增多。相比之下,下层的异养途径则更多。我们的研究结果还表明,翁特湖是第一个存在大量氨氧化硝基螺旋藻和amoA基因的南极湖泊。回收生物分子的基因组能力在涵盖 19 个门的元基因组(MAGs)中十分普遍。这凸显了超寡养环境中营养物质清除的重要性。总之,我们的研究为了解微生物结构的形成和南极层状微生物毯潜在的代谢复杂性提供了新的视角。这些垫层是生物多样性的重要环境,推动着极地沙漠的生物地球化学循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Succession of Bacteria and Archaea Within the Soil Micro-Food Web Shifts Soil Respiration Dynamics Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens Bacterial communities on giant kelp in the Magellan Strait: Geographical and intra-thallus patterns Bee microbiomes in a changing climate: Investigating the effects of temperature on solitary bee life history and health Understanding the ecological versatility of Tetracladium species in temperate forest soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1