Maider J. Echeveste Medrano, Garrett J. Smith, Irene Sánchez-Andrea, Mike S. M. Jetten, Cornelia U. Welte
Coastal ecosystems are increasingly exposed to high nutrient loads and salinity intrusions due to rising seawater levels. Microbial communities, key drivers of elemental cycles in these ecosystems, consequently, experience fluctuations. This study investigates how the methane-rich coastal sediment microbiome from the Stockholm Archipelago copes with high and low nitrogen and sulfide loading by simulating coastal conditions in two methane-saturated anoxic brackish bioreactors. Over a year, the bioreactors were subjected to the same ratio of nitrate, ammonium and sulfide (2:1:1) under eutrophic or oligotrophic conditions and monitored using 16S rRNA gene amplicon and metagenomic sequencing. Sulfide was depleted in both conditions. Sulfide-dependent denitrification was the predominant process in eutrophic conditions, whereas dissimilatory nitrate reduction to ammonium dominated under oligotrophic conditions. Methane oxidation was driven by Methylobacter and Methylomonas in eutrophic conditions, whereas a more diverse methane-oxidising microbial community developed under oligotrophic conditions, which likely competed for nitrate with anaerobic methanotrophic archaea and the gammaproteobacterial MBAE14. Novel putative copper-dependent membrane-bound monooxygenases (Cu-MMOs) were identified in MBAE14 and co-enriched Rugosibacter genomes, suggesting the need for further physiological and genetic characterisation. This study highlights the importance of understanding coastal anoxic microbiomes under fluctuating conditions, revealing complex interactions and novel pathways crucial for ecosystem functioning.
{"title":"Contrasting Methane, Sulfide and Nitrogen-Loading Regimes in Bioreactors Shape Microbial Communities Originating From Methane-Rich Coastal Sediment of the Stockholm Archipelago","authors":"Maider J. Echeveste Medrano, Garrett J. Smith, Irene Sánchez-Andrea, Mike S. M. Jetten, Cornelia U. Welte","doi":"10.1111/1462-2920.70056","DOIUrl":"https://doi.org/10.1111/1462-2920.70056","url":null,"abstract":"<p>Coastal ecosystems are increasingly exposed to high nutrient loads and salinity intrusions due to rising seawater levels. Microbial communities, key drivers of elemental cycles in these ecosystems, consequently, experience fluctuations. This study investigates how the methane-rich coastal sediment microbiome from the Stockholm Archipelago copes with high and low nitrogen and sulfide loading by simulating coastal conditions in two methane-saturated anoxic brackish bioreactors. Over a year, the bioreactors were subjected to the same ratio of nitrate, ammonium and sulfide (2:1:1) under eutrophic or oligotrophic conditions and monitored using 16S rRNA gene amplicon and metagenomic sequencing. Sulfide was depleted in both conditions. Sulfide-dependent denitrification was the predominant process in eutrophic conditions, whereas dissimilatory nitrate reduction to ammonium dominated under oligotrophic conditions. Methane oxidation was driven by <i>Methylobacter</i> and <i>Methylomonas</i> in eutrophic conditions, whereas a more diverse methane-oxidising microbial community developed under oligotrophic conditions, which likely competed for nitrate with anaerobic methanotrophic archaea and the gammaproteobacterial MBAE14. Novel putative copper-dependent membrane-bound monooxygenases (Cu-MMOs) were identified in MBAE14 and co-enriched <i>Rugosibacter</i> genomes, suggesting the need for further physiological and genetic characterisation. This study highlights the importance of understanding coastal anoxic microbiomes under fluctuating conditions, revealing complex interactions and novel pathways crucial for ecosystem functioning.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen compounds often serve as crucial electron donors and acceptors in microbial energy metabolism, playing a key role in biogeochemical cycles. The energetic favorability of nitrogen oxidation–reduction (redox) reactions, driven by the thermodynamic properties of these compounds, may have shaped the evolution of microbial energy metabolism, though the extent of their influence remains unclear. This study quantitatively evaluated the similarity between energetically superior nitrogen reactions, identified from 988 theoretically plausible reactions, and the nitrogen community-level network, reconstructed as a combination of enzymatic reactions representing intracellular to interspecies-level reaction interactions. Our analysis revealed significant link overlap rates between these networks. Notably, composite enzymatic reactions aligned more closely with energetically superior reactions than individual enzymatic reactions. These findings suggest that selective pressure from the energetic favorability of redox reactions can operate primarily at the species or community level, underscoring the critical role of thermodynamics in shaping microbial metabolic networks and ecosystem functioning.
{"title":"Thermodynamics Underpinning the Microbial Community-Level Nitrogen Energy Metabolism","authors":"Mayumi Seto, Risa Sasaki, Hideshi Ooka, Ryuhei Nakamura","doi":"10.1111/1462-2920.70055","DOIUrl":"https://doi.org/10.1111/1462-2920.70055","url":null,"abstract":"<p>Nitrogen compounds often serve as crucial electron donors and acceptors in microbial energy metabolism, playing a key role in biogeochemical cycles. The energetic favorability of nitrogen oxidation–reduction (redox) reactions, driven by the thermodynamic properties of these compounds, may have shaped the evolution of microbial energy metabolism, though the extent of their influence remains unclear. This study quantitatively evaluated the similarity between energetically superior nitrogen reactions, identified from 988 theoretically plausible reactions, and the nitrogen community-level network, reconstructed as a combination of enzymatic reactions representing intracellular to interspecies-level reaction interactions. Our analysis revealed significant link overlap rates between these networks. Notably, composite enzymatic reactions aligned more closely with energetically superior reactions than individual enzymatic reactions. These findings suggest that selective pressure from the energetic favorability of redox reactions can operate primarily at the species or community level, underscoring the critical role of thermodynamics in shaping microbial metabolic networks and ecosystem functioning.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}