Walid A Abdelhady, Mohamed F Metwally, Khaled M Haggag
{"title":"Effect of thermomechanical loading on fracture resistance and failure mode of new pressable zirconia-reinforced lithium disilicate onlay restoration.","authors":"Walid A Abdelhady, Mohamed F Metwally, Khaled M Haggag","doi":"10.34172/joddd.40843","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Insufficient information exists regarding the fracture resistance and failure pattern of newly developed zirconia-reinforced lithium disilicate (ZL, Vita Ambria) onlays. This in vitro study compared the fracture resistance of two types of onlays: monolithic lithium disilicate (LD) and monolithic ZL.</p><p><strong>Methods: </strong>Forty-eight ceramic onlay restorations were fabricated on epoxy dies using a maxillary first premolar model. The samples were divided into two main groups: LD and ZL. Half of each group was subjected to thermomechanical fatigue loading (TML) using a chewing simulator. All the samples were cemented with self-adhesive resin cement. Subsequently, they were loaded until failure in a universal testing machine, and the fracture patterns and resistance were recorded.</p><p><strong>Results: </strong>Before TML, ZL demonstrated the highest statistically significant mean fracture resistance (499.76±34.14N) compared to LD (470.40±27.38N). After TML, ZL showed the highest non-statistically significant mean fracture resistance (429.27±131.42N), while LD's mean fracture resistance decreased (377.31±62.18N).</p><p><strong>Conclusion: </strong>Monolithic zirconia-reinforced onlays demonstrated higher fracture resistance and a more favorable failure mode compared to LD. However, the impact of thermomechanical aging resulted in reduced fracture resistance for both materials, with a notable preference observed for ZL.</p>","PeriodicalId":15599,"journal":{"name":"Journal of Dental Research, Dental Clinics, Dental Prospects","volume":"18 1","pages":"29-36"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research, Dental Clinics, Dental Prospects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/joddd.40843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Insufficient information exists regarding the fracture resistance and failure pattern of newly developed zirconia-reinforced lithium disilicate (ZL, Vita Ambria) onlays. This in vitro study compared the fracture resistance of two types of onlays: monolithic lithium disilicate (LD) and monolithic ZL.
Methods: Forty-eight ceramic onlay restorations were fabricated on epoxy dies using a maxillary first premolar model. The samples were divided into two main groups: LD and ZL. Half of each group was subjected to thermomechanical fatigue loading (TML) using a chewing simulator. All the samples were cemented with self-adhesive resin cement. Subsequently, they were loaded until failure in a universal testing machine, and the fracture patterns and resistance were recorded.
Results: Before TML, ZL demonstrated the highest statistically significant mean fracture resistance (499.76±34.14N) compared to LD (470.40±27.38N). After TML, ZL showed the highest non-statistically significant mean fracture resistance (429.27±131.42N), while LD's mean fracture resistance decreased (377.31±62.18N).
Conclusion: Monolithic zirconia-reinforced onlays demonstrated higher fracture resistance and a more favorable failure mode compared to LD. However, the impact of thermomechanical aging resulted in reduced fracture resistance for both materials, with a notable preference observed for ZL.
期刊介绍:
Journal of Dental Research Dental Clinics Dental Prospects (JODDD) is a Platinum* Open Access, peer-reviewed quarterly indexed journal that publishes articles of basic, clinical, and prospective nature in all areas of dentistry and oral health.