{"title":"Genome-scale models of metabolism and expression predict the metabolic burden of recombinant protein expression","authors":"Omid Oftadeh, Vassily Hatzimanikatis","doi":"10.1016/j.ymben.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>The production of recombinant proteins in a host using synthetic constructs such as plasmids comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and other stress responses, collectively known as metabolic burden. Increasing the number of copies of the foreign gene increases the metabolic load but increases the expression of the foreign protein. Thus, there is a trade-off between biomass and product yield in response to changes in heterologous gene copy number. This work proposes a computational method, rETFL (recombinant Expression and Thermodynamic Flux), for analyzing and predicting the responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an extension to the ETFL formulations designed to reconstruct models of metabolism and expression (ME-models). We have illustrated the capabilities of the method in four studies to (i) capture the growth reduction in plasmid-containing <em>E. coli</em> and recombinant protein production; (ii) explore the trade-off between biomass and product yield as plasmid copy number is varied; (iii) predict the emergence of overflow metabolism in recombinant <em>E. coli</em> in agreement with experimental data; and (iv) investigate the individual pathways and enzymes affected by the presence of the plasmid. We anticipate that rETFL will serve as a comprehensive platform for integrating available omics data for recombinant organisms and making context-specific predictions that can help optimize recombinant expression systems for biopharmaceutical production and gene therapy.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 109-116"},"PeriodicalIF":6.8000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000788","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The production of recombinant proteins in a host using synthetic constructs such as plasmids comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and other stress responses, collectively known as metabolic burden. Increasing the number of copies of the foreign gene increases the metabolic load but increases the expression of the foreign protein. Thus, there is a trade-off between biomass and product yield in response to changes in heterologous gene copy number. This work proposes a computational method, rETFL (recombinant Expression and Thermodynamic Flux), for analyzing and predicting the responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an extension to the ETFL formulations designed to reconstruct models of metabolism and expression (ME-models). We have illustrated the capabilities of the method in four studies to (i) capture the growth reduction in plasmid-containing E. coli and recombinant protein production; (ii) explore the trade-off between biomass and product yield as plasmid copy number is varied; (iii) predict the emergence of overflow metabolism in recombinant E. coli in agreement with experimental data; and (iv) investigate the individual pathways and enzymes affected by the presence of the plasmid. We anticipate that rETFL will serve as a comprehensive platform for integrating available omics data for recombinant organisms and making context-specific predictions that can help optimize recombinant expression systems for biopharmaceutical production and gene therapy.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.