Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase.
Stamatina Roussou, Minmin Pan, Jens Krömer, Peter Lindblad
{"title":"Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase.","authors":"Stamatina Roussou, Minmin Pan, Jens Krömer, Peter Lindblad","doi":"10.1016/j.ymben.2025.01.008","DOIUrl":null,"url":null,"abstract":"<p><p>Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO<sub>2</sub> using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells. By inserting a heterologous phosphoketolase (PKPa) in the acs locus, encoding acetyl-CoA synthetase responsible for the irreversible conversion of acetate to acetyl-CoA, an increased level of 40 times was observed. Metabolite analyses indicate an enhanced Calvin-Benson-Bassham cycle, based on increased levels of glyceraldehyde 3-phosphate and fructose-1,6-biphosphate, while the decreased levels of 3-phosphoglycerate and pyruvate suggest a quick consumption of the fixed carbon. Acetyl-P and erythrose-4-phosphate showed significantly increased levels, as products of phosphoketolase, while acetyl-CoA remained stable through the experiment. The results of intra- and extra-cellular acetate levels clearly demonstrate an efficient excretion of produced acetate from the cells in the engineered strain. Knock-out of ach and pta showed a reduction in acetate production however, it was not as low as in cells with a single knock-out of ach. Overexpressing acetyl-CoA hydrolase (Ach) and acetate kinase (AckA) did not significantly increase production. In contrast, overexpressing phosphotransacetylase (Pta) in cells containing an inserted PKPa resulted in 80 times more acetate reaching 2.3 g/L after 14 days of cultivation.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.01.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO2 using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells. By inserting a heterologous phosphoketolase (PKPa) in the acs locus, encoding acetyl-CoA synthetase responsible for the irreversible conversion of acetate to acetyl-CoA, an increased level of 40 times was observed. Metabolite analyses indicate an enhanced Calvin-Benson-Bassham cycle, based on increased levels of glyceraldehyde 3-phosphate and fructose-1,6-biphosphate, while the decreased levels of 3-phosphoglycerate and pyruvate suggest a quick consumption of the fixed carbon. Acetyl-P and erythrose-4-phosphate showed significantly increased levels, as products of phosphoketolase, while acetyl-CoA remained stable through the experiment. The results of intra- and extra-cellular acetate levels clearly demonstrate an efficient excretion of produced acetate from the cells in the engineered strain. Knock-out of ach and pta showed a reduction in acetate production however, it was not as low as in cells with a single knock-out of ach. Overexpressing acetyl-CoA hydrolase (Ach) and acetate kinase (AckA) did not significantly increase production. In contrast, overexpressing phosphotransacetylase (Pta) in cells containing an inserted PKPa resulted in 80 times more acetate reaching 2.3 g/L after 14 days of cultivation.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.