{"title":"Comparative Performance Analysis of Idylla and Archer in the Detection of Gene Fusions in Spitzoid Melanocytic Tumors","authors":"","doi":"10.1016/j.modpat.2024.100538","DOIUrl":null,"url":null,"abstract":"<div><p>Melanocytic neoplasms with spitzoid histomorphology are often difficult to classify without identifying genetic drivers such as kinase fusions. Traditional diagnostic methods, such as immunohistochemistry, can yield inconclusive results, and advanced techniques such as the Archer fusion assay are often inaccessible and costly. The Idylla GeneFusion Assay might offer a rapid and cost-effective alternative. This study compared Idylla and Archer in identifying <em>ALK</em>, pan-<em>NTRK</em>, <em>RET</em>, and <em>ROS1</em> gene fusions. Of the 147 samples where next-generation sequencing did not detect genetic drivers, 89 (60.5%) meeting the tissue requirements were further analyzed using Idylla (Cohort A). Idylla demonstrated a sensitivity of 75% and a specificity of 100% in detecting these fusions. Additionally, among 27 randomly selected cases (Cohort B) that failed to meet the inclusion criteria, Idylla maintained the same levels of sensitivity and specificity. Our findings also show that Idylla can be effectively conducted with isolated RNA, broadening its applicability beyond tissue samples. Although the Idylla assay may not replace more comprehensive molecular assays such as Archer, it could serve as a valuable initial screening tool in diagnosing spitzoid melanocytic tumors.</p></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":"37 8","pages":"Article 100538"},"PeriodicalIF":7.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0893395224001182/pdfft?md5=a399d23ed67d47bd28b5f04eb0f79201&pid=1-s2.0-S0893395224001182-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224001182","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Melanocytic neoplasms with spitzoid histomorphology are often difficult to classify without identifying genetic drivers such as kinase fusions. Traditional diagnostic methods, such as immunohistochemistry, can yield inconclusive results, and advanced techniques such as the Archer fusion assay are often inaccessible and costly. The Idylla GeneFusion Assay might offer a rapid and cost-effective alternative. This study compared Idylla and Archer in identifying ALK, pan-NTRK, RET, and ROS1 gene fusions. Of the 147 samples where next-generation sequencing did not detect genetic drivers, 89 (60.5%) meeting the tissue requirements were further analyzed using Idylla (Cohort A). Idylla demonstrated a sensitivity of 75% and a specificity of 100% in detecting these fusions. Additionally, among 27 randomly selected cases (Cohort B) that failed to meet the inclusion criteria, Idylla maintained the same levels of sensitivity and specificity. Our findings also show that Idylla can be effectively conducted with isolated RNA, broadening its applicability beyond tissue samples. Although the Idylla assay may not replace more comprehensive molecular assays such as Archer, it could serve as a valuable initial screening tool in diagnosing spitzoid melanocytic tumors.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.