Charlotte Fowler, Xiaoxuan Cai, Justin T Baker, Jukka-Pekka Onnela, Linda Valeri
{"title":"Testing unit root non-stationarity in the presence of missing data in univariate time series of mobile health studies.","authors":"Charlotte Fowler, Xiaoxuan Cai, Justin T Baker, Jukka-Pekka Onnela, Linda Valeri","doi":"10.1093/jrsssc/qlae010","DOIUrl":null,"url":null,"abstract":"<p><p>The use of digital devices to collect data in mobile health studies introduces a novel application of time series methods, with the constraint of potential data missing at random or missing not at random (MNAR). In time-series analysis, testing for stationarity is an important preliminary step to inform appropriate subsequent analyses. The Dickey-Fuller test evaluates the null hypothesis of unit root non-stationarity, under no missing data. Beyond recommendations under data missing completely at random for complete case analysis or last observation carry forward imputation, researchers have not extended unit root non-stationarity testing to more complex missing data mechanisms. Multiple imputation with chained equations, Kalman smoothing imputation, and linear interpolation have also been used for time-series data, however such methods impose constraints on the autocorrelation structure and impact unit root testing. We propose maximum likelihood estimation and multiple imputation using state space model approaches to adapt the augmented Dickey-Fuller test to a context with missing data. We further develop sensitivity analyses to examine the impact of MNAR data. We evaluate the performance of existing and proposed methods across missing mechanisms in extensive simulations and in their application to a multi-year smartphone study of bipolar patients.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"73 3","pages":"755-773"},"PeriodicalIF":1.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlae010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of digital devices to collect data in mobile health studies introduces a novel application of time series methods, with the constraint of potential data missing at random or missing not at random (MNAR). In time-series analysis, testing for stationarity is an important preliminary step to inform appropriate subsequent analyses. The Dickey-Fuller test evaluates the null hypothesis of unit root non-stationarity, under no missing data. Beyond recommendations under data missing completely at random for complete case analysis or last observation carry forward imputation, researchers have not extended unit root non-stationarity testing to more complex missing data mechanisms. Multiple imputation with chained equations, Kalman smoothing imputation, and linear interpolation have also been used for time-series data, however such methods impose constraints on the autocorrelation structure and impact unit root testing. We propose maximum likelihood estimation and multiple imputation using state space model approaches to adapt the augmented Dickey-Fuller test to a context with missing data. We further develop sensitivity analyses to examine the impact of MNAR data. We evaluate the performance of existing and proposed methods across missing mechanisms in extensive simulations and in their application to a multi-year smartphone study of bipolar patients.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.