S. A. V. Manikanta Sarma, Devendra Pathak, Opinder Singh, Varinder Uppal, Jitender Mohindroo, Ratan Kumar Choudhary
{"title":"Gross morphology and morphometry of native and decellularized heart valves of caprine: A comparative study","authors":"S. A. V. Manikanta Sarma, Devendra Pathak, Opinder Singh, Varinder Uppal, Jitender Mohindroo, Ratan Kumar Choudhary","doi":"10.1111/ahe.13075","DOIUrl":null,"url":null,"abstract":"<p>The gross morphological examination of native caprine heart valves revealed distinctive structural characteristics of the caprine's cardiac anatomy. Four primary orifices were identified, each protected by thin, valve-like structures. Atrioventricular orifices featured tricuspid and bicuspid valves, while the aorta and pulmonary arteries were guarded by semilunar valves. Within the atrioventricular apparatus, distinct features were observed including the tricuspid valve's three leaflets and the bicuspid valve's anterior and posterior leaflets. Ultrasonography provided insights into valve thickness and chordae tendineae lengths. Morphometric studies compared leaflets/cusps within individual native valves, showcasing significant variations in dimensions. Comparative analysis between native and decellularized valves highlighted the effects of decellularization on leaflet thickness and chordae tendineae lengths. Decellularized valves exhibited reduced dimensions compared to native valves, indicating successful removal of cellular components. While some dimensions remained unchanged post-decellularization, significant reductions were observed in leaflet thicknesses and chordae tendineae lengths. Notably, semilunar valve cusps displayed varying responses to decellularization, with significant reductions in cusp lengths observed in the aortic valve, while the pulmonary valve exhibited more subtle changes. These findings underscore the importance of understanding structural alterations in heart valves post-decellularization, providing valuable insights for tissue engineering applications and regenerative medicine.</p>","PeriodicalId":49290,"journal":{"name":"Anatomia Histologia Embryologia","volume":"53 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomia Histologia Embryologia","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahe.13075","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The gross morphological examination of native caprine heart valves revealed distinctive structural characteristics of the caprine's cardiac anatomy. Four primary orifices were identified, each protected by thin, valve-like structures. Atrioventricular orifices featured tricuspid and bicuspid valves, while the aorta and pulmonary arteries were guarded by semilunar valves. Within the atrioventricular apparatus, distinct features were observed including the tricuspid valve's three leaflets and the bicuspid valve's anterior and posterior leaflets. Ultrasonography provided insights into valve thickness and chordae tendineae lengths. Morphometric studies compared leaflets/cusps within individual native valves, showcasing significant variations in dimensions. Comparative analysis between native and decellularized valves highlighted the effects of decellularization on leaflet thickness and chordae tendineae lengths. Decellularized valves exhibited reduced dimensions compared to native valves, indicating successful removal of cellular components. While some dimensions remained unchanged post-decellularization, significant reductions were observed in leaflet thicknesses and chordae tendineae lengths. Notably, semilunar valve cusps displayed varying responses to decellularization, with significant reductions in cusp lengths observed in the aortic valve, while the pulmonary valve exhibited more subtle changes. These findings underscore the importance of understanding structural alterations in heart valves post-decellularization, providing valuable insights for tissue engineering applications and regenerative medicine.
期刊介绍:
Anatomia, Histologia, Embryologia is a premier international forum for the latest research on descriptive, applied and clinical anatomy, histology, embryology, and related fields. Special emphasis is placed on the links between animal morphology and veterinary and experimental medicine, consequently studies on clinically relevant species will be given priority. The editors welcome papers on medical imaging and anatomical techniques. The journal is of vital interest to clinicians, zoologists, obstetricians, and researchers working in biotechnology. Contributions include reviews, original research articles, short communications and book reviews.