Direct and indirect reference intervals of 25-hydroxyvitamin D: it is not a real vitamin D deficiency pandemic.

Juan José Perales-Afán, Diego Aparicio-Pelaz, Sheila López-Triguero, Elena Llorente, Juan José Puente-Lanzarote, Marta Fabre
{"title":"Direct and indirect reference intervals of 25-hydroxyvitamin D: it is not a real vitamin D deficiency pandemic.","authors":"Juan José Perales-Afán, Diego Aparicio-Pelaz, Sheila López-Triguero, Elena Llorente, Juan José Puente-Lanzarote, Marta Fabre","doi":"10.11613/BM.2024.020706","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Many studies report vitamin D (25-OH-D) deficiency, although there is no consensus among scientific societies on cut-offs and reference intervals (RI). The aim of this study is to establish and compare RI for serum 25-OH-D by direct and indirect methods.</p><p><strong>Materials and methods: </strong>Two studies were performed in Zaragoza (Spain). A retrospective study (N = 7222) between January 2017 and April 2019 was used for RI calculation by indirect method and a prospective study (N = 312) with healthy volunteers recruited in August 2019 and February 2020 for direct method. Seasonal differences were investigated. Measurements were performed on Cobas C8000 (Roche-Diagnostics, Basel, Switzerland) using electrochemiluminescence immunoassay technology.</p><p><strong>Results: </strong>Reference intervals (2.5-97.5 percentile and corresponding 95% confidence intervals, CIs) were as follows: by indirect method 5.6 ng/mL (5.4 to 5.8) - 57.2 ng/mL (55.2 to 59.8), in winter 5.4 ng/mL (5.2 to 5.7) - 55.7 ng/mL (53.6 to 58.4), while in summer 5.9 ng/mL (5.4 to 6.2) - 59.9 ng/mL (56.3 to 62.9). By direct method 9.0 ng/mL (5.7 to 9.5) - 41.4 ng/mL (37.6 to 48.0), in winter 7.4 ng/mL (3.9 to 8.6) - 34.6 ng/mL (30.6 to 51.5), while in summer 13.3 ng/mL (10.1 to 14.1) - 44.1 ng/mL (38.9 to 66.0). In both methods, RIs were higher in summer. A significant difference was observed in 25-OH-D median values between the two methods (P < 0.001).</p><p><strong>Conclusions: </strong>Reference interval calculation according to the studied area may be a useful tool to adapt the deficiency cut-offs for 25-OH-D. Our data support 25-OH-D values over 12.0 ng/mL for healthy population as sufficient, therefore current recommendations should be updated. In addition, differences in seasonality should be taken into account.</p>","PeriodicalId":94370,"journal":{"name":"Biochemia medica","volume":"34 2","pages":"020706"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11613/BM.2024.020706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Many studies report vitamin D (25-OH-D) deficiency, although there is no consensus among scientific societies on cut-offs and reference intervals (RI). The aim of this study is to establish and compare RI for serum 25-OH-D by direct and indirect methods.

Materials and methods: Two studies were performed in Zaragoza (Spain). A retrospective study (N = 7222) between January 2017 and April 2019 was used for RI calculation by indirect method and a prospective study (N = 312) with healthy volunteers recruited in August 2019 and February 2020 for direct method. Seasonal differences were investigated. Measurements were performed on Cobas C8000 (Roche-Diagnostics, Basel, Switzerland) using electrochemiluminescence immunoassay technology.

Results: Reference intervals (2.5-97.5 percentile and corresponding 95% confidence intervals, CIs) were as follows: by indirect method 5.6 ng/mL (5.4 to 5.8) - 57.2 ng/mL (55.2 to 59.8), in winter 5.4 ng/mL (5.2 to 5.7) - 55.7 ng/mL (53.6 to 58.4), while in summer 5.9 ng/mL (5.4 to 6.2) - 59.9 ng/mL (56.3 to 62.9). By direct method 9.0 ng/mL (5.7 to 9.5) - 41.4 ng/mL (37.6 to 48.0), in winter 7.4 ng/mL (3.9 to 8.6) - 34.6 ng/mL (30.6 to 51.5), while in summer 13.3 ng/mL (10.1 to 14.1) - 44.1 ng/mL (38.9 to 66.0). In both methods, RIs were higher in summer. A significant difference was observed in 25-OH-D median values between the two methods (P < 0.001).

Conclusions: Reference interval calculation according to the studied area may be a useful tool to adapt the deficiency cut-offs for 25-OH-D. Our data support 25-OH-D values over 12.0 ng/mL for healthy population as sufficient, therefore current recommendations should be updated. In addition, differences in seasonality should be taken into account.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
25- 羟基维生素 D 的直接和间接参考区间:维生素 D 缺乏症并未真正流行。
导言:许多研究都报告了维生素 D(25-OH-D)缺乏症,但科学协会对临界值和参考区间(RI)尚未达成共识。本研究旨在通过直接和间接方法确定并比较血清 25-OH-D 的参考区间:在萨拉戈萨(西班牙)进行了两项研究。一项回顾性研究(N = 7222)于 2017 年 1 月至 2019 年 4 月间采用间接法计算 RI,一项前瞻性研究(N = 312)于 2019 年 8 月至 2020 年 2 月间招募健康志愿者采用直接法计算 RI。研究还调查了季节性差异。采用电化学发光免疫测定技术,在 Cobas C8000(罗氏诊断公司,瑞士巴塞尔)上进行测量:参考区间(2.5-97.5 百分位数和相应的 95% 置信区间,CIs)如下:间接法 5.6 纳克/毫升(5.4 至 5.8)- 57.2 纳克/毫升(55.2 至 59.8),冬季为 5.4 纳克/毫升(5.2 至 5.7)- 55.7 纳克/毫升(53.6 至 58.4),夏季为 5.9 纳克/毫升(5.4 至 6.2)- 59.9 纳克/毫升(56.3 至 62.9)。通过直接法,9.0 纳克/毫升(5.7 至 9.5)- 41.4 纳克/毫升(37.6 至 48.0),冬季 7.4 纳克/毫升(3.9 至 8.6)- 34.6 纳克/毫升(30.6 至 51.5),而夏季 13.3 纳克/毫升(10.1 至 14.1)- 44.1 纳克/毫升(38.9 至 66.0)。在两种方法中,夏季的 RIs 都较高。两种方法的 25-OH-D 中位值差异明显(P < 0.001):根据研究地区计算参考区间可能是调整 25-OH-D 缺乏临界值的有用工具。我们的数据支持健康人群的 25-OH-D 值超过 12.0 纳克/毫升就足够了,因此应更新当前的建议。此外,还应考虑季节性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Are we ready to integrate advanced artificial intelligence models in clinical laboratory? Implementation of new Westgard rules suggested by the Westgard Advisor software for five immunological parameters. Levothyroxine therapy reduces endocan and total cholesterol concentrations in patients with subclinical hypothyroidism. Red blood cell agglutination caused by ceftriaxone and its effect on erythrocyte parameters: a case report. Serum progastrin-releasing peptide in pneumonia, chronic obstructive pulmonary disease and early-stage primary lung cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1