Impact of Arctic Amplification variability on the chemical composition of the snowpack in Svalbard

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-06-17 DOI:10.5194/egusphere-2024-1393
Azzurra Spagnesi, Elena Barbaro, Matteo Feltracco, Federico Scoto, Marco Vecchiato, Massimiliano Vardè, Mauro Mazzola, François Yves Burgay, Federica Bruschi, Clara Jule Marie Hoppe, Allison Bailey, Andrea Gambaro, Carlo Barbante, Andrea Spolaor
{"title":"Impact of Arctic Amplification variability on the chemical composition of the snowpack in Svalbard","authors":"Azzurra Spagnesi, Elena Barbaro, Matteo Feltracco, Federico Scoto, Marco Vecchiato, Massimiliano Vardè, Mauro Mazzola, François Yves Burgay, Federica Bruschi, Clara Jule Marie Hoppe, Allison Bailey, Andrea Gambaro, Carlo Barbante, Andrea Spolaor","doi":"10.5194/egusphere-2024-1393","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Arctic Amplification (AA) is leading to significant glacier ice melting, rapid sea ice decline, and alterations in atmospheric and geochemical processes in the Arctic regions, with consequences on the formation, transport, and chemical composition of aerosols and seasonal snowpack. Svalbard is particularly exposed to the AA, thus represents a relevant site in the Arctic to evaluate changes in local environmental processes contributing to the seasonal snow chemical composition. Sampling campaigns were conducted from 2018 to 2021 at the Gruvebadet Snow Research Site in Ny-Ålesund, in the North-West of the Svalbard Archipelago. During the investigated years, interannual variability of ionic and elemental impurities in surface snowpack has been associated to an alternation between relative warm years (2018–19, 2020–21), typical of the Arctic Amplification (AA) period, and relatively cold years (2019–20), more similar to the pre-AA conditions. Our results indicate that the concentration of impurities during the colder sampling season is strongly dependent on the production of sea spray related aerosol, likely deriving by a larger extension of sea ice, and drier, windy conditions. Our findings were therefore linked to the presence of sea ice in the Kongsfjorden in March 2020, and more generally around Spitsbergen, resulting from the exceptional occurrence of a strong and cold wintry stratospheric polar vortex and unusual AO index positive phase. By comparing the snow chemical composition of the 2019–20 season with 2018–19 and 2020–21, we present an overview of the possible impact of AA on the Svalbard snowpack, and the related change in the aerosol production process.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1393","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Arctic Amplification (AA) is leading to significant glacier ice melting, rapid sea ice decline, and alterations in atmospheric and geochemical processes in the Arctic regions, with consequences on the formation, transport, and chemical composition of aerosols and seasonal snowpack. Svalbard is particularly exposed to the AA, thus represents a relevant site in the Arctic to evaluate changes in local environmental processes contributing to the seasonal snow chemical composition. Sampling campaigns were conducted from 2018 to 2021 at the Gruvebadet Snow Research Site in Ny-Ålesund, in the North-West of the Svalbard Archipelago. During the investigated years, interannual variability of ionic and elemental impurities in surface snowpack has been associated to an alternation between relative warm years (2018–19, 2020–21), typical of the Arctic Amplification (AA) period, and relatively cold years (2019–20), more similar to the pre-AA conditions. Our results indicate that the concentration of impurities during the colder sampling season is strongly dependent on the production of sea spray related aerosol, likely deriving by a larger extension of sea ice, and drier, windy conditions. Our findings were therefore linked to the presence of sea ice in the Kongsfjorden in March 2020, and more generally around Spitsbergen, resulting from the exceptional occurrence of a strong and cold wintry stratospheric polar vortex and unusual AO index positive phase. By comparing the snow chemical composition of the 2019–20 season with 2018–19 and 2020–21, we present an overview of the possible impact of AA on the Svalbard snowpack, and the related change in the aerosol production process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极放大变异对斯瓦尔巴积雪化学成分的影响
摘要。北极放大效应(AA)正在导致冰川融化、海冰迅速减少以及北极地区大气和地球化学过程的改变,从而对气溶胶和季节性积雪的形成、迁移和化学成分产生影响。斯瓦尔巴群岛尤其受到大气环流的影响,因此是北极地区评估当地环境过程变化对季节性积雪化学成分影响的相关地点。采样活动于 2018 年至 2021 年在斯瓦尔巴群岛西北部尼-奥勒松的 Gruvebadet 雪地研究基地进行。在所调查的年份中,地表积雪中离子和元素杂质的年际变化与相对温暖年份(2018-19 年、2020-21 年)和相对寒冷年份(2019-20 年)之间的交替有关,前者是典型的北极放大(AA)时期,后者则更类似于 AA 前的情况。我们的研究结果表明,较冷采样季节的杂质浓度在很大程度上取决于与海雾相关的气溶胶的产生,这可能是由于海冰的延伸范围更大,以及更干燥、多风的条件造成的。因此,我们的研究结果与 2020 年 3 月康斯峡湾海冰的存在有关,更广泛地说与斯匹次卑尔根周围海冰的存在有关,这是强冷风平流层极地涡旋和不寻常的 AO 指数正相异常出现的结果。通过比较2019-20年雪季与2018-19年和2020-21年雪季的雪化学成分,我们概述了AA对斯瓦尔巴雪堆可能产生的影响,以及气溶胶产生过程的相关变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1