Frequency-Division Multiplexing Continuous Variable Quantum Dense Coding with Broadband Entanglement

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-06-17 DOI:10.1002/lpor.202400094
Shaocong Liang, Jialin Cheng, Jiliang Qin, Jiatong Li, Yi Shi, Baiyun Zeng, Zhihui Yan, Xiaojun Jia, Changde Xie, Kunchi Peng
{"title":"Frequency-Division Multiplexing Continuous Variable Quantum Dense Coding with Broadband Entanglement","authors":"Shaocong Liang, Jialin Cheng, Jiliang Qin, Jiatong Li, Yi Shi, Baiyun Zeng, Zhihui Yan, Xiaojun Jia, Changde Xie, Kunchi Peng","doi":"10.1002/lpor.202400094","DOIUrl":null,"url":null,"abstract":"Quantum dense coding (QDC) provides great potential for high-capacity quantum communication. However, it is highly demanded for practical applications to realize high-capacity QDC with multiple coded information. Here, a high-capacity QDC with multiple streams is reported in different channels simultaneously through frequency-division multiplexing (FDM). The broadband entangled state is generated from a pair of degenerate optic al parametric amplifiers with short cavity lengths. Based on the resultant broadband entanglement, multiple pieces of information coded using binary phase shift keying (BPSK) are transferred with the FDM method. As an experimental demonstration, four pieces of information composed of pseudo-random numbers are transmitted at a rate of 4 Mbit s<sup>–1</sup> using BPSK encoding. The decoded bit error rate reaches <span data-altimg=\"/cms/asset/13f17340-5f97-4662-8fc7-cbd253267378/lpor202400094-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202400094-math-0001.png\"><mjx-semantics><mjx-msup data-semantic-children=\"0,3\" data-semantic- data-semantic-role=\"integer\" data-semantic-speech=\"10 Superscript negative 3\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.393em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202400094:lpor202400094-math-0001\" display=\"inline\" location=\"graphic/lpor202400094-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msup data-semantic-=\"\" data-semantic-children=\"0,3\" data-semantic-role=\"integer\" data-semantic-speech=\"10 Superscript negative 3\" data-semantic-type=\"superscript\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">10</mn><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2\" data-semantic-content=\"1\" data-semantic-parent=\"4\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></mrow></msup>$ 10^{-3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, which is an average 35-fold improvement compared with the classical scheme. Furthermore, it is possible to make full use of sideband resource for four different information by using orthogonal FDM. This scheme can be extended to more different information by directly increasing the FDM sideband subchannels, and opens an avenue to construct high-capacity quantum communication, while minimizing the cost of quantum resource.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400094","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dense coding (QDC) provides great potential for high-capacity quantum communication. However, it is highly demanded for practical applications to realize high-capacity QDC with multiple coded information. Here, a high-capacity QDC with multiple streams is reported in different channels simultaneously through frequency-division multiplexing (FDM). The broadband entangled state is generated from a pair of degenerate optic al parametric amplifiers with short cavity lengths. Based on the resultant broadband entanglement, multiple pieces of information coded using binary phase shift keying (BPSK) are transferred with the FDM method. As an experimental demonstration, four pieces of information composed of pseudo-random numbers are transmitted at a rate of 4 Mbit s–1 using BPSK encoding. The decoded bit error rate reaches 103$ 10^{-3}$, which is an average 35-fold improvement compared with the classical scheme. Furthermore, it is possible to make full use of sideband resource for four different information by using orthogonal FDM. This scheme can be extended to more different information by directly increasing the FDM sideband subchannels, and opens an avenue to construct high-capacity quantum communication, while minimizing the cost of quantum resource.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带宽带纠缠的频分复用连续可变量子密集编码
量子密集编码(QDC)为大容量量子通信提供了巨大潜力。然而,在实际应用中,实现具有多种编码信息的高容量 QDC 有着很高的要求。在这里,我们通过频分复用(FDM)技术,在不同信道中同时报告了具有多个信息流的高容量 QDC。宽带纠缠态由一对具有短腔长的退化光学参量放大器产生。基于由此产生的宽带纠缠,利用频分复用技术传输使用二进制相移键控(BPSK)编码的多条信息。作为实验演示,使用 BPSK 编码以 4 Mbit s-1 的速率传输了四条由伪随机数组成的信息。解码后的误码率达到 10-3$ 10^{-3}$,与经典方案相比平均提高了 35 倍。此外,通过使用正交频分复用技术,还可以充分利用边带资源来传输四种不同的信息。该方案可通过直接增加 FDM 边带子信道扩展到更多不同信息,为构建大容量量子通信开辟了一条途径,同时最大限度地降低了量子资源成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Efficient Rational Approximation of Optical Response Functions with the AAA Algorithm Topologically Protected Single Edge Mode Lasing in Photonic Crystal Su–Schrieffer–Heeger Lattice with Directional Loss Control All-Dielectric Meta-Waveguides for Flexible Polarization Control of Guided Light Suppressing Side-Scattering on Laser-Written Bragg Gratings for Back-Reflection Engineering in Fibers High Resolution Nanostructuring of Perovskites With Tunable Morphologies by Ultrafast Laser Direct Writing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1