Polarization Anisotropy of Ultrafast Electronic Dynamics in AB-Stacked Rhenium Disulfide

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-06-17 DOI:10.1002/aelm.202400050
Yulu Qin, Rui Wang, Jianing Zhang, Yeqinbo Zhang, Yunkun Wang, Xiaofang Li, Yunan Gao, Liang-You Peng, Qihuang Gong, Yunquan Liu
{"title":"Polarization Anisotropy of Ultrafast Electronic Dynamics in AB-Stacked Rhenium Disulfide","authors":"Yulu Qin,&nbsp;Rui Wang,&nbsp;Jianing Zhang,&nbsp;Yeqinbo Zhang,&nbsp;Yunkun Wang,&nbsp;Xiaofang Li,&nbsp;Yunan Gao,&nbsp;Liang-You Peng,&nbsp;Qihuang Gong,&nbsp;Yunquan Liu","doi":"10.1002/aelm.202400050","DOIUrl":null,"url":null,"abstract":"<p>Revealing transient electronic properties in anisotropic 2D materials is a prerequisite for developing ultrafast optoelectronic functional devices. Here, the ultrafast electronic dynamics of polarization anisotropy for the AB-stacked rhenium disulfide (ReS<sub>2</sub>) are studied using time- and energy-resolved photoemission electron microscopy. The ultrafast electronic relaxation process exhibits sensitive layer-dependent polarization anisotropy. The linear dichroism of the ultrafast electronic dynamics is also measured, indicating that the polarization anisotropy is determined by the fast process on the sub-picosecond scale. With ab initio theory calculations, it is confirmed that the ultra-sensitive layer dependence of the lifetime of the fast process originates from a stronger interlayer coupling in the K-Γ direction (along the b-axis) of ReS<sub>2</sub>. Further, by analyzing the time-resolved photoemission energy spectrum, distinct “fast” and “slow” regimes are found in the ultrafast dynamics of excited electrons with different energies. The corresponding energy windows also show substantial polarization anisotropy, which is associated with the linear dichroism of the electron-phonon coupling in the AB-stacked ReS<sub>2</sub>. This work has implications for the design of angle-sensitive optoelectronic functional devices with the AB-stacked ReS<sub>2</sub>.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400050","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Revealing transient electronic properties in anisotropic 2D materials is a prerequisite for developing ultrafast optoelectronic functional devices. Here, the ultrafast electronic dynamics of polarization anisotropy for the AB-stacked rhenium disulfide (ReS2) are studied using time- and energy-resolved photoemission electron microscopy. The ultrafast electronic relaxation process exhibits sensitive layer-dependent polarization anisotropy. The linear dichroism of the ultrafast electronic dynamics is also measured, indicating that the polarization anisotropy is determined by the fast process on the sub-picosecond scale. With ab initio theory calculations, it is confirmed that the ultra-sensitive layer dependence of the lifetime of the fast process originates from a stronger interlayer coupling in the K-Γ direction (along the b-axis) of ReS2. Further, by analyzing the time-resolved photoemission energy spectrum, distinct “fast” and “slow” regimes are found in the ultrafast dynamics of excited electrons with different energies. The corresponding energy windows also show substantial polarization anisotropy, which is associated with the linear dichroism of the electron-phonon coupling in the AB-stacked ReS2. This work has implications for the design of angle-sensitive optoelectronic functional devices with the AB-stacked ReS2.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AB 层二硫化铼中超快电子动力学的极化各向异性
揭示各向异性二维材料的瞬态电子特性是开发超快光电功能器件的先决条件。本文利用时间和能量分辨光发射电子显微镜研究了 AB 层二硫化钼(ReS2)极化各向异性的超快电子动力学。超快电子弛豫过程表现出敏感的层依赖性极化各向异性。同时还测量了超快电子动力学的线性二向性,表明极化各向异性是由亚皮秒尺度的快速过程决定的。通过 ab initio 理论计算,证实了快速过程寿命的超敏感层依赖性源于 ReS2 的 K-Γ 方向(沿 b 轴)上更强的层间耦合。此外,通过分析时间分辨光发射能谱,我们还发现在不同能量的激发电子的超快动力学过程中,存在着明显的 "快 "和 "慢 "现象。相应的能窗还显示出极大的极化各向异性,这与 AB 层 ReS2 中电子-声子耦合的线性二色性有关。这项工作对利用 AB 层 ReS2 设计角度敏感的光电功能器件具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1