Aided Kalman Filter Models for GNSS-Based Space Navigation

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2024-03-21 DOI:10.1109/JRFID.2024.3403914
Oliviero Vouch;Andrea Nardin;Alex Minetto;Simone Zocca;Matteo Valvano;Fabio Dovis
{"title":"Aided Kalman Filter Models for GNSS-Based Space Navigation","authors":"Oliviero Vouch;Andrea Nardin;Alex Minetto;Simone Zocca;Matteo Valvano;Fabio Dovis","doi":"10.1109/JRFID.2024.3403914","DOIUrl":null,"url":null,"abstract":"Ground-based assets traditionally aid space vehicle navigation, but the need for autonomy is steadily growing to meet the demands of future deep-space exploration. This paper proposes a customized Trajectory-Aware Extended Kalman Filter (TA-EKF) architecture, which conforms to the kinematic approach for Orbit Determination (OD) based on Global Navigation Satellite System (GNSS). Challenges at high altitudes, such as reduced GNSS signal availability and poor geometry, necessitate advanced filtering architectures leveraging external aiding data. When the receiver is not expected to interface with on-board guidance and control subsystems, aiding observations—in the form of a pre-mission planned spacecraft trajectory—allow to pursue precise and accurate OD only relying on GNSS measurements. Two alternative OAEKF designs are formulated, which foresee observation-domain and state-domain integration of aiding observations, respectively. While the former design acts directly on the filter posterior, the latter aims to overcome deficiencies in the state prediction owing to misspecified process dynamics. The feasibility of using terrestrial GNSS signals in Earth-Moon transfer orbits (MTOs) is thus demonstrated against aiding observation errors and mismodeling. The developed OAEKF models are thoroughly assessed via extensive Monte Carlo (MC) analyses, comparing their OD performance against a standalone EKF solution in a dedicated constellation simulator and mission planner.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10536015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10536015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-based assets traditionally aid space vehicle navigation, but the need for autonomy is steadily growing to meet the demands of future deep-space exploration. This paper proposes a customized Trajectory-Aware Extended Kalman Filter (TA-EKF) architecture, which conforms to the kinematic approach for Orbit Determination (OD) based on Global Navigation Satellite System (GNSS). Challenges at high altitudes, such as reduced GNSS signal availability and poor geometry, necessitate advanced filtering architectures leveraging external aiding data. When the receiver is not expected to interface with on-board guidance and control subsystems, aiding observations—in the form of a pre-mission planned spacecraft trajectory—allow to pursue precise and accurate OD only relying on GNSS measurements. Two alternative OAEKF designs are formulated, which foresee observation-domain and state-domain integration of aiding observations, respectively. While the former design acts directly on the filter posterior, the latter aims to overcome deficiencies in the state prediction owing to misspecified process dynamics. The feasibility of using terrestrial GNSS signals in Earth-Moon transfer orbits (MTOs) is thus demonstrated against aiding observation errors and mismodeling. The developed OAEKF models are thoroughly assessed via extensive Monte Carlo (MC) analyses, comparing their OD performance against a standalone EKF solution in a dedicated constellation simulator and mission planner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全球导航卫星系统的空间导航辅助卡尔曼滤波模型
地基资产传统上用于辅助太空飞行器导航,但为了满足未来深空探索的需求,对自主性的需求正在稳步增长。本文提出了一种定制的轨迹感知扩展卡尔曼滤波器(TA-EKF)架构,它符合基于全球导航卫星系统(GNSS)的轨道确定(OD)运动学方法。高海拔地区面临的挑战,如全球导航卫星系统(GNSS)信号可用性降低和几何形状不佳,需要利用外部辅助数据建立先进的滤波架构。当接收器预计不会与机载制导和控制子系统连接时,辅助观测--任务前计划航天器轨迹的形式--允许仅依靠全球导航卫星系统的测量来追求精确和准确的定向。本文提出了两种可供选择的 OAEKF 设计,分别设想了观测域和状态域的辅助观测整合。前一种设计直接作用于滤波器后验,而后一种设计则旨在克服由于过程动态的不确定而导致的状态预测缺陷。因此,在地月转移轨道(MTOs)上使用地面全球导航卫星系统信号的可行性得到了验证,从而避免了辅助观测误差和错误建模。通过广泛的蒙特卡罗(MC)分析,对所开发的 OAEKF 模型进行了全面评估,并在专用星座模拟器和飞行任务规划器中将其 OD 性能与独立的 EKF 解决方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag A Fully-Passive Frequency Diverse Lens-Enabled mmID for Precise Ranging and 2-Axis Orientation Detection in Next-Generation IoT and Cyberphysical Systems A Compact Slot-Based Bi-Directional UHF RFID Reader Antenna for Far-Field Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1