Joseph Patton;Alexander C. Barrie;Stewart Doe;Daniel Gershman;Levon Avanov;Ali Abedi
{"title":"Automated Current Monitoring for Microchannel Plates on Fast Plasma Investigation","authors":"Joseph Patton;Alexander C. Barrie;Stewart Doe;Daniel Gershman;Levon Avanov;Ali Abedi","doi":"10.1109/JRFID.2024.3398443","DOIUrl":null,"url":null,"abstract":"The Fast Plasma Investigation (FPI) is an instrument suite aboard NASA’s Magnetospheric Multiscale space physics mission, which is designed to study magnetic reconnection in the Earth’s magnetosphere. In this work, a predictive model of microchannel plate (MCP) current was developed for FPI to autonomously monitor the device currents. The results of an analysis of the resistance of the microchannel plates included in the FPI particle spectrometers are presented along with a new model that combines a physically-informed model of MCP resistance with an empirically-derived model of FPI instrument temperature. This improved estimation of MCP resistance allows for a more precise determination of nominal MCP current, enabling accurate detection of current anomalies.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"526-534"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10525187/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Fast Plasma Investigation (FPI) is an instrument suite aboard NASA’s Magnetospheric Multiscale space physics mission, which is designed to study magnetic reconnection in the Earth’s magnetosphere. In this work, a predictive model of microchannel plate (MCP) current was developed for FPI to autonomously monitor the device currents. The results of an analysis of the resistance of the microchannel plates included in the FPI particle spectrometers are presented along with a new model that combines a physically-informed model of MCP resistance with an empirically-derived model of FPI instrument temperature. This improved estimation of MCP resistance allows for a more precise determination of nominal MCP current, enabling accurate detection of current anomalies.