Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-06-18 DOI:10.5194/acp-24-6987-2024
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, Xinhui Bi
{"title":"Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China","authors":"Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, Xinhui Bi","doi":"10.5194/acp-24-6987-2024","DOIUrl":null,"url":null,"abstract":"Abstract. While aqueous-phase processing is known to contribute to the formation of nitrogen-containing organic compounds (NOCs), the specific pathways involved remain poorly understood. In this study, we aimed to characterize the NOCs present in both pre-fog aerosols and fog water collected at a suburban site in northern China. Fourier-transform ion cyclotron resonance mass spectrometry was utilized to analyze the molecular composition of NOCs in both negative and positive modes of electrospray ionization (ESI− and ESI+). In both pre-fog aerosols and fog water samples, NOCs constituted a significant portion, accounting for over 60 % of all assigned formulas in ESI− and more than 80 % in ESI+. By comparing the molecular composition of NOCs originating from biomass burning, coal combustion, and vehicle emissions, we identified that 72.3 % of NOCs in pre-fog aerosols were attributed to primary anthropogenic sources (pNOCs), while the remaining NOCs were categorized as secondary NOCs formed within the aerosols (saNOCs). Unique NOCs found in fog water were classified as secondary NOCs formed within the fog water (sfNOCs). Through a comprehensive “precursor–product pair” screening involving 39 reaction pathways, we observed that the nitration reaction, the amine pathway, and the intramolecular N-heterocycle pathway of NH3 addition reactions contributed 43.6 %, 22.1 %, and 11.6 % of saNOCs, respectively. In contrast, these pathways contributed 26.8 %, 28.4 %, and 29.7 % of sfNOCs, respectively. This disparity in formation pathways is likely influenced by the diverse precursors, the aqueous acidity, and the gas-phase species partitioning. Correspondingly, saNOCs were found to contain a higher abundance of carbohydrate-like and highly oxygenated compounds with two nitrogen atoms compared to pNOCs. Conversely, sfNOCs exhibited a higher content of lipid-like compounds with fewer oxygen atoms. These results underscore the distinct secondary processes contributing to the diversity of NOCs in aerosols and fog water, which may lead to their different climate effects.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"46 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-6987-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. While aqueous-phase processing is known to contribute to the formation of nitrogen-containing organic compounds (NOCs), the specific pathways involved remain poorly understood. In this study, we aimed to characterize the NOCs present in both pre-fog aerosols and fog water collected at a suburban site in northern China. Fourier-transform ion cyclotron resonance mass spectrometry was utilized to analyze the molecular composition of NOCs in both negative and positive modes of electrospray ionization (ESI− and ESI+). In both pre-fog aerosols and fog water samples, NOCs constituted a significant portion, accounting for over 60 % of all assigned formulas in ESI− and more than 80 % in ESI+. By comparing the molecular composition of NOCs originating from biomass burning, coal combustion, and vehicle emissions, we identified that 72.3 % of NOCs in pre-fog aerosols were attributed to primary anthropogenic sources (pNOCs), while the remaining NOCs were categorized as secondary NOCs formed within the aerosols (saNOCs). Unique NOCs found in fog water were classified as secondary NOCs formed within the fog water (sfNOCs). Through a comprehensive “precursor–product pair” screening involving 39 reaction pathways, we observed that the nitration reaction, the amine pathway, and the intramolecular N-heterocycle pathway of NH3 addition reactions contributed 43.6 %, 22.1 %, and 11.6 % of saNOCs, respectively. In contrast, these pathways contributed 26.8 %, 28.4 %, and 29.7 % of sfNOCs, respectively. This disparity in formation pathways is likely influenced by the diverse precursors, the aqueous acidity, and the gas-phase species partitioning. Correspondingly, saNOCs were found to contain a higher abundance of carbohydrate-like and highly oxygenated compounds with two nitrogen atoms compared to pNOCs. Conversely, sfNOCs exhibited a higher content of lipid-like compounds with fewer oxygen atoms. These results underscore the distinct secondary processes contributing to the diversity of NOCs in aerosols and fog water, which may lead to their different climate effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国北方气溶胶和雾水中含氮有机化合物的不同形成途径
摘要众所周知,水相处理有助于含氮有机化合物(NOCs)的形成,但对其中的具体途径仍知之甚少。在这项研究中,我们旨在描述在中国北方郊区收集到的雾前气溶胶和雾水中的含氮有机化合物的特征。我们采用傅立叶变换离子回旋共振质谱法,在电喷雾负离子和正离子电离(ESI- 和 ESI+)模式下分析了 NOCs 的分子组成。在雾前气溶胶和雾水样本中,NOC 占了很大一部分,在 ESI- 和 ESI+ 模式下,NOC 分别占了所有指定公式的 60% 和 80% 以上。通过比较源于生物质燃烧、煤炭燃烧和汽车排放的 NOC 的分子组成,我们发现雾前气溶胶中 72.3% 的 NOC 属于一次人为来源(pNOC),而其余的 NOC 则被归类为在气溶胶中形成的二次 NOC(saNOC)。在雾水中发现的独特 NOC 被归类为在雾水中形成的二次 NOC(sfNOCs)。通过对 39 种反应途径进行全面的 "前体-产物对 "筛选,我们发现硝化反应、胺途径和 NH3 加成反应的分子内 N-异环途径分别占 saNOCs 的 43.6%、22.1% 和 11.6%。相比之下,这些途径分别产生了 26.8%、28.4% 和 29.7% 的 sfNOCs。这种形成途径上的差异可能是受前体的多样性、水的酸度和气相物种分配的影响。相应地,与 pNOCs 相比,saNOCs 含有更多的类似碳水化合物和含有两个氮原子的高含氧化合物。相反,sfNOCs 则含有更多氧原子较少的类脂化合物。这些结果突出表明,气溶胶和雾水中的 NOCs 的多样性是由不同的二次过程造成的,这可能会导致它们对气候产生不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1