Head movement dynamics in dystonia: a multi-centre retrospective study using visual perceptive deep learning

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-06-18 DOI:10.1038/s41746-024-01140-6
Robert Peach, Maximilian Friedrich, Lara Fronemann, Muthuraman Muthuraman, Sebastian R. Schreglmann, Daniel Zeller, Christoph Schrader, Joachim K. Krauss, Alfons Schnitzler, Matthias Wittstock, Ann-Kristin Helmers, Steffen Paschen, Andrea Kühn, Inger Marie Skogseid, Wilhelm Eisner, Joerg Mueller, Cordula Matthies, Martin Reich, Jens Volkmann, Chi Wang Ip
{"title":"Head movement dynamics in dystonia: a multi-centre retrospective study using visual perceptive deep learning","authors":"Robert Peach, Maximilian Friedrich, Lara Fronemann, Muthuraman Muthuraman, Sebastian R. Schreglmann, Daniel Zeller, Christoph Schrader, Joachim K. Krauss, Alfons Schnitzler, Matthias Wittstock, Ann-Kristin Helmers, Steffen Paschen, Andrea Kühn, Inger Marie Skogseid, Wilhelm Eisner, Joerg Mueller, Cordula Matthies, Martin Reich, Jens Volkmann, Chi Wang Ip","doi":"10.1038/s41746-024-01140-6","DOIUrl":null,"url":null,"abstract":"Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01140-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01140-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌张力障碍中的头部运动动态:利用视觉感知深度学习的多中心回顾性研究
肌张力障碍是一种神经系统运动障碍,其特征是异常的不自主运动和姿势,尤其影响头部和颈部。然而,目前肌张力障碍的临床评估方法依赖于简化的评分量表,无法捕捉肌张力障碍现象错综复杂的时空特征,从而阻碍了临床管理,限制了对潜在神经生物学的理解。为了解决这个问题,我们开发了一种视觉感知深度学习框架,利用标准临床视频全面评估和量化疾病状态以及治疗干预(特别是深部脑刺激)的影响。该框架克服了传统评分量表的局限性,为肌张力障碍患者的评估和监测提供了一种独立于评分者的高效、准确的方法。为了评估该框架,我们利用了在七个学术中心进行的三项回顾性纵向队列研究中收集的半标准化临床视频数据。我们提取了静态头部角度偏移进行临床验证,并得出了反映自然头部动态的运动学变量,以预测肌张力障碍的严重程度、亚型和神经调节效果。该框架还应用于完全独立的广泛性肌张力障碍患者队列,以比较肌张力障碍亚型。计算机视觉得出的头部角度偏移测量结果与临床评分有很强的相关性。在所有比较中,我们从完整的视频评估中发现了一致的运动学特征,这些特征编码了对疾病严重程度、亚型和神经回路干预效果至关重要的信息,与用于评分的静态头部角度偏差无关。我们的视觉感知机器学习框架揭示了肌张力障碍的运动学病理特征,有可能增强临床管理,促进科学转化,并为个性化精准神经学方法提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Automated decision making in Barrett’s oesophagus: development and deployment of a natural language processing tool The adaptation of a single institution diabetes care platform into a nationally available turnkey solution Deep learning based highly accurate transplanted bioengineered corneal equivalent thickness measurement using optical coherence tomography Artificial intelligence applied to coronary artery calcium scans (AI-CAC) significantly improves cardiovascular events prediction Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1